
Java COM

RETAILERS PLEASE DISPLAY
UNTIL JULY 31, 2001

$4.99US $6.99CAN

May 2001 Volume:6 Issue:5

The World’s Leading Java Resource

TM

Feature: Power JMS Applying the facade pattern Tarak Modi
to JMS using a custom protocol handler 26

J2EE: Beyond the JMS Specification David Chappell & Bill Cullen
Real-world issues for large-scale B2B deployments PART 3 36

Feature: Universal Wrapper for Andrei Povodyrev & Alan Askew
Entity Beans A design approach for multitier applications 44

EJB Home: Implementing J2EE Jason Westra & Chris Siemback

Security with WebLogic Server The benefits and ease of use PART 2 52

Feature: Building Thread-Safe GUIs Neal Ford
with Swing Create a rich user interface library 60

Enterprise Java: Fitting the Pieces into Tony Loton
the Enterprise Java Jigsaw Applet-servlet communication 68

Feature: Building a Telephone/Voice Kent V. Klinner III
Portal with Java It’s quick, and it’s easy – & Dale B. Walker
lightweight telephony applications using Java PART 1 74

JMS: Distributed Logging Using David Chappell & Greg Pavlik
the JMS A flexible solution for enterprise computing environments 84

Security: A Practical Solution for Alexis Grandemange
Deployment of JSP Download without compromising security PART 3 102

WEBSERVICESEDGE 2001 P.107

Sept 23–26, 2001 New York, NY

110

Oct 22–25, 2001 Santa Clara, CA

2
0

0
1

Editorial
by Sean Rhody pg. 5

From the Editor
by Alan Williamson pg. 7

CORBA Corner
by Jon Siegel pg. 18

VisualAge Repository
Brady Flowers pg. 92

Product Reviews
zeroCode pg. 98

CocoBase Enterprise pg. 122
Bean-test 3.1 pg. 132

Embedded Java
by Marc R. Erickson pg. 112

Book Review
Database Programming with

JDBC and Java pg. 116

Trading Partner

Trading Par ner

Partner
Application

Partner
Application

Partner
Application

Partner
Application

Partner
Application

JMS
Server

J SJMS
Server

JMSJMS
Server

Markrketplace
Portal

Application
Portal

Application

Portal
Application

Portal
ApplicationApplication

JMSS
ServerServer

JMS
erSServer

JMS
ServerServerSe

per for entity beans universal wrapper for entity beans universal wrapper fo

ns universal wrapper for entity beans universal wrapper for entity beans un

per for entity beans universal wrapper for entity beans universal wrapper fo

ns universal wrapper for entity beans universal wrapper for entity beans un

per for entity beans universal wrapper for entity beans universal wrapper fo

1
2

gg

5MAY 2001

Java COM

SEAN RHODY, FOUNDING EDITOR/CHIEF CORPORATE EDITOR

AUTHOR BIO
Sean Rhody is the founding editor of Java Developer’s Journal. He is also a respected industry

expert and a consultant with a leading Internet service company.

My column two months ago, “Sunset
on the Evil Empire,” stirred up a
great deal of controversy. Part of it

was my fault, as I was trying to make two dis-
tinct points in the article, and that elicited a
great deal of excitement directed at one point
or the other. My first point, which I made in a
curmudgeonly manner, was that Windows
95/98/Me is unstable, and that I was unhap-
py with that DOS-based platform. My second
point concerned the Sun–Microsoft lawsuit
settlement, in which we, the consumers,
were the true losers.

With regard to the first point, I received a
variety of responses. Several readers encour-
aged me to look at the Windows 2000 plat-
form as a much more stable environment. I
have, by the way. And I’ve been running its
older brother NT for years. For a develop-
ment platform I find it fairly stable, although
I was able to crash it the other day by running
five or six separate VMs and killing the virtu-
al memory.

Other readers recommended the usual
variety of operating systems. “Try Linux,”
they said. Or, “The Mac is a great platform.”
Agreed. I have Linux, Solaris, and HP-UX
running at home. I like the Gnome interface
on Linux, and find the CDE environment so
similar that it’s hard for me to tell whether
I’m running the Sun box or the HP. I haven’t
tried a Mac in years, but OS X might tempt
me.

Some readers were incensed that I wasn’t
impressed with the consumer version of
Microsoft’s operating system. “Spam,” one
reader called it. Another called me a “Charter
member of the ‘I hate Microsoft club,’” which
I found pretty amusing as most of the folks
on that side of the house wanted to shoot me
when I ran a DCOM article a year or so ago.

In any case, I made a mistake ranting
about operating systems, because doing that
is like arguing religion – it can be fun, but
nobody ever resolves anything.

Now concerning my second point, I
received still more comments. I’m disap-
pointed in the decision, because it means no
Java integration into a very large set of appli-

cations that are used by the
majority of end users in the
world. I would have loved to see
Java as an alternative scripting
language to VBA, and certainly
JSP would have been a nice alter-
native to ASP for IIS. Instead we
get to use C# and .NET.

Once again readers were of
two minds. Some felt that Java
was making the Windows plat-
form and its accompanying set of
applications irrelevant. I disagree
with some of that, mainly the part
about the applications. Certainly
the “write once, run anywhere”
approach, combined with J2EE,
has made selection of a server
more a matter of hardware com-
patibility and scalability than
software features, which is what I
think Sun intended all along.

Other readers thought that Java was
becoming irrelevant and blamed Sun for trying
to control the hottest language in the market
rather than moving it to a true open standard. I
have a hard time believing the hottest language
in the market will become irrelevant, but I do
understand how the open standard issue is
affecting acceptance…and not affecting it.

The one I liked best, though, came from a
Microsoft employee in the IIS division. Of all
the Microsoft-centric replies, his was actual-
ly the most polite. He suggested that there
was no reason a vendor couldn’t build a Java
version of the common runtime for .NET,
effectively creating Java on the Microsoft
platform. And he’s right, although from a Java
perspective I think that’s backwards. It’s mov-
ing the mountain to Mohammed. Still, it was
an intelligent, interesting comment, and I
hope someone accomplishes it.

So why did I recap this at all? Because I
wanted to let you all know that I do read your e-
mails, and that we at JDJ value your input.
Obviously, this was a topic near and dear to all
of your hearts, and there were as many opinions
as there are readers. Those of you who haven’t
written, I’d like to hear your views too.

sean@sys-con.com

E D I T O R I A L

Son of a
Sunset

E D I T O R I A L A D V I S O R Y B O A R D
JEREMY ALLAIRE, TED COOMBS, ARTHUR VAN HOFF, JIM MILBERY,

GEORGE PAOLINI, KIM POLESE, SEAN RHODY, RICK ROSS, AJIT SAGAR,
BRUCE SCOTT, RICHARD SOLEY, ALAN WILLIAMSON

FOUNDING EDITOR/CHIEF CORPORATE EDITOR: SEAN RHODY
EDITORIAL DIRECTOR: JEREMY GEELAN

EDITOR-IN-CHIEF: ALAN WILLIAMSON
EXECUTIVE EDITOR: M’LOU PINKHAM

ASSOCIATE ART DIRECTOR: LOUIS F. CUFFARI
MANAGING EDITOR: CHERYL VAN SISE

EDITOR: NANCY VALENTINE
ASSOCIATE EDITOR: JAMIE MATUSOW
ASSISTANT EDITOR: GREGORY LUDWIG
EDITORIAL INTERN: NIKI PANAGOPOULOS
TECHNICAL EDITOR: BAHADIR KARUV, PH.D.

PRODUCT REVIEW EDITOR: JIM MILBERY
INDUSTRY NEWS EDITOR: LEE PARSEGHIAN

J2EE EDITOR: AJIT SAGAR

W R I T E R S I N T H I S I S S U E
ALAN ASKEW, BILL BALOGLU, BRIAN A. BARBASH, DAVID CHAPPELL, BILL CULLEN, VALOR

DODD, MARC R. ERICKSON, BRADY FLOWERS, NEAL FORD,
ALEXIS GRANDEMANGE, CEDRICK W. JOHNSON, KENT V. KLINNER III, TONY LOTON, JAMES
MCGOVERN, TARAK MODI, BILLY PALMIERI, GREG PAVLIK, ANDREI POVODYREV, SEAN

RHODY, JON SIEGEL, CHRIS SIEMBACK, DALE B.WALKER, JASON WESTRA, ALAN WILLIAMSON

S U B S C R I P T I O N S
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: SUBSCRIBE@SYS-CON.COM
COVER PRICE: $4.99/ISSUE

DOMESTIC: $69.99/YR. (12 ISSUES)
CANADA/MEXICO: $79.99/YR. OVERSEAS: $99.99/YR.

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $10/EA., INTERNATIONAL $15/EA.

PUBLISHER, PRESIDENT,AND CEO: FUAT A. KIRCAALI
VICE PRESIDENT, PRODUCTION & DESIGN: JIM MORGAN

SENIOR VICE PRESIDENT, SALES & MARKETING: CARMEN GONZALEZ
VICE PRESIDENT, SALES & MARKETING: MILES SILVERMAN

ADVERTISING ACCOUNT EXECUTIVE: RONALD J. PERETTI
VICE PRESIDENT, SYS-CON EVENTS: CATHY WALTERS

TRADE SHOW MANAGER: DONA VELTHAUS
SALES EXECUTIVES, EXHIBITS: MICHAEL PESICK

RICHARD ANDERSON
ADVERTISING SALES DIRECTOR: ROBYN FORMA

ADVERTISING ACCOUNT MANAGER: MEGAN RING
ADVERTISING ASSISTANT: CHRISTINE RUSSELL

ASSOCIATE SALES MANAGER: CARRIE GEBERT
SALES ASSISTANT: ALISA CATALANO

CIRULATION MANAGER: CHERIE JOHNSON
ART DIRECTOR: ALEX BOTERO

ASSISTANT ART DIRECTOR: CATHRYN BURAK
GRAPHIC DESIGNERS: ABRAHAM ADDO

RICHARD SILVERBERG
AARATHI VENKATARAMAN

WEBMASTER: ROBERT DIAMOND
WEB DESIGNER: STEPHEN KILMURRAY

WEB DESIGNER INTERN: PURVA DAVE
JDJSTORE.COM: ANTHONY D. SPITZER

ASSISTANT CONTROLLER: JUDITH CALNAN
CREDIT & COLLECTIONS: CYNTHIA OBIDZINSKI

ACCOUNTS PAYABLE: JOAN LAROSE

E D I T O R I A L O F F I C E S
SYS-CON MEDIA 135 CHESTNUT RIDGE RD., MONTVALE, NJ 07645

TELEPHONE: 201 802-3000 FAX: 201 782-9600
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645. Periodicals postage rates are paid at

Montvale, NJ 07645 and additional mailing offices. POSTMASTER: Send address
changes to: JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

135 Chestnut Ridge Road, Montvale, NJ 07645.

© C O P Y R I G H T
Copyright © 2001 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and

retrieval system, without written permission. For promotional reprints, contact reprint coordi-
nator. SYS-CON Publications, Inc., reserves the right to revise, republish and authorize its

readers to use the articles submitted for publication.

W O R L D W I D E D I S T R I B U T I O N B Y
CURTIS CIRCULATION COMPANY

730 RIVER ROAD, NEW MILFORD NJ 07646-3048 PHONE: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

7MAY 2001

Java COM

AUTHOR BIO
Alan Williamson holds the reins at n-ary (consulting) Ltd,
one of the first companies in the UK to specialize in Java at the server side.

ALAN WILLIAMSON, EDITOR-IN-CHIEF

Last month when I sat down to write
this editorial I had the good fortune to
be staring out at the Golden Gate

Bridge. Sadly, this month the view isn’t quite
as romantic; I’m sitting approximately 12
inches away from an elderly lady who has
decided to push her seat back, reducing my
air space by what seems a factor of 10. Yup,
I’m on a plane heading for SYS-CON HQ to
begin the layout for the JavaOne issue of JDJ.

Since taking on this prestigious role, my
understanding of the publishing world has
jumped up a huge number of levels. It’s a
wonderful road to be traveling, and, as I
busily scribble in my notebook, it’s quite a
responsibility that – if I were to sit and think
about it – would keep me up at night.

Think about it. I and the JDJ team here
have to prepare content for you that not
only will educate but hopefully entertain. It’s
quite a task. Being a hard-core Java develop-
er myself, I know how picky you are and
what your attention to detail is like.

In fact, just yesterday my upcoming
keynote at a Java conference in London was
put on hold. The reason? The organizers got
word there would be a major anticapitalist
demonstration on the same day and they
feared for our safety. When you hear it the
first time it’s quite funny, but when you give
it a little more thought it’s quite sobering to
think you’re involved in an event people feel
strongly enough to actually picket. Kinda
throws the notion that computers and the
software we’re all involved with are for the
greater good. Or at least that’s the dream I’m
hanging – no, clinging – on to.

The hippy in me (or as close as a ’70s/’80s
child can get to being a hippy) thinks there
isn’t enough love in this world and all we
need to do is just give a little hug to our
neighbors to let them know we care.
Wouldn’t the world be a nicer place to live?

For me, I feel this whole Web Services
revolution is the computer industry’s hug to
one another. At last vendors are waking up

to the fact that there are solutions out there
other than their own.

And here’s the news flash: not all clients
buy a single-vendor solution. Instead, it’ll be
a hodgepodge of solutions that claim they
all talk to one another, but in reality will real-
ly sing only after thousands of dollars have
been spent on consultants to get it working.

Web Services is the initiative to attempt
to get all these solutions talking to one
another without the extra overhead of the
consultants. Wonderful goal, but I can’t see it
working quite as well in reality as the mar-
keting/PR people are prophesying. “But it’s
just using Java and XML as the core,” they
say. So? What does that solve? My mother
and I both speak English but, bless her, I
doubt she’ll ever understand what it is I do.

I support the notion of Web Services and
I’m keeping my ear to the ground to see
what’s really going on. There’s a lot of
announcements in this area at the moment
and it’s quite daunting trying to keep up
with it. Well, not only will we feature the odd
Web Services piece, we’re proud to an-
nounce that next month SYS-CON Media
will launch a new title, Web Services Journal,
that will keep you up to date on this new
arena. Look for it inside JDJ at JavaOne.

As you know, last month I was in San
Francisco doing a tour of duty. I met a lot of
people and did a lot of listening. I wanted to
gauge the mood of the place, especially now
that the bottom has most definitely fallen
out of the dot-com market. Should we be
worried or not? Well, I’m happy to report
that the technical roles still need to be filled
with skilled engineers. Although not as plen-
tiful as they used to be – and merely turning
up for the interview no longer serves you the
job – on the whole, as one highly respected
engineer put it, Silicon Valley is finally com-
ing back down to earth. And what happens
in the Valley generates ripples through to the
rest of us.

So don’t panic.

alan@sys-con.com

F R O M T H E E D I T O R

All You Need
Is Love

Java COMJava COM

Speed

up

your

GUI construuction

H
e

eManager

eThe

AttachmentLayout

Valor DoddValor DoddWritten by Written by Valor DoddWritten by

ave you ever needed to write a simple graphical
user interface (GUI) but didn’t have the right
kind of layout manager? Do you hate to use a
layout manager that takes you longer to
understand than to make your GUI? If this is the
case, you’re probably not a big fan of the
GridBagLayout manager and its complexities.
 This article describes Attachment-
Layout, a layout manager that allows for GUI
components (buttons, labels, lists, etc.) to be
placed inside a container to its edges using
spatial relationships. It’s a simple but effective
layout manager that can be easily visualized and
implemented with only one line per component.

9MAY 20018 MAY 2001

Java COM Java COM

“The AttachmentLayout y

enables you to get to the heart of the software engineering that the simple GUI supports.”

ee

ee

e

e e e

e

e

e e

e

“...the most important methods

of the interface that

need to be

defined are

addLayoutComponent

 and layoutContainer”

Background and Concept
The AttachmentLayout manager

was developed for two reasons. The
first is to allow construction of a GUI
with only a few basic components
placed inside a frame or dialog box –
this can’t be easily done using
FlowLayout, BorderLayout,
GridLayout, or BoxLayout. These first
three layout managers are supplied by
all implementations of the Java
Development Kit (JDK) and are the
easiest to use and understand. The
last layout manager, BoxLayout, is
included in the latest implementa-
tions of the Swing package and is
more difficult to use. In many simple
GUIs, GridLayout and FlowLayout can’t produce the desired
component layouts. BorderLayout and BoxLayout can pro-
duce many simple GUIs, but with additional overhead and
less efficiency. Almost all GUIs can be constructed with the
exact pixel placement of the components or using the
GridBagLayout. Exact pixel placement would get the job done,
but most experienced GUI developers wouldn’t recommend
this course of action as it can lead to less portable code.

The second reason for the development of the At-
tachmentLayout manager is that the GridBagLayout is com-
plex and can be cumbersome when constructing a simple
GUI. The AttachmentLayout enables you to get to the heart of
the software engineering that the simple GUI supports.

AttachmentLayout was designed to emulate certain
aspects of the layout managers available in X-
Windows/Motif without the complexities of a Grid-
BagLayout manager or the inefficiencies of the others. The
concept behind the AttachmentLayout manager is the abili-
ty to have a GUI element such as a button be connected
(hence the word attached) to a container edge and, in some
cases, to other GUI elements. In Figure 1 a button has the
container as an attachment on its right side with a specified
pixel offset between the button and the container. If the user
stretches the right side of the container during program exe-
cution, the button keeps the same dimensions but follows
the right side of the container as it’s stretched. In another

example, if the container is attached
to the button’s top, bottom, left, and
right sides, the button will increase
its width and height as the contain-
er’s width and height are increased.

Implementation
The AttachmentLayout manag-

er consists of two classes. The first,
Attachment.java (see Listing 1),
defines how a single component is
attached to the container and to other
components. It allows a component
to have an attachment to its top, bot-
tom, left, or right side. (Listings 1–4
can be found on the JDJ Web site,
w w w. J a v a D e v e l o p e r s J o u r n a l .

com.) An additional feature of Attachment.java is pixel
padding. Padding is the number of pixels a component will
always have between it and the component it has an attach-
ment to on one of its sides. Attachment.java has three con-
structors defined, and the one most commonly used is shown
below.

public Attachment(leftPad, leftComp, rightPad,

rightComp, bottomPad, bottomComp, topPad, topComp)

The first input parameter (leftPad) is the left pixel padding
between a component and its left-side attached component.
LeftComp is the component that will be attached to the left
side. The same follows for the right, bottom, and top attach-
ments, respectively. If you don’t wish to have an attachment to
one or more sides, the component input parameter for that
particular side should be set to null. An instance of
Attachment is assigned to each component when it’s added to
a container specifying an AttachmentLayout. Also stored in
each instance of Attachment are the pixel location, width, and
height of the component. All these fields are necessary to
compute the location and size of each component when the
container is resized. The size and location of each component
is computed in AttachmentLayout.java.

The second class is AttachmentLayout.java (see Listing 2).
To use the AttachmentLayout, a container must specify its use
with setLayout(new AttachmentLayout()). Attachment-
Layout has one constructor with no parameters. The con-
structor’s only function is to initialize a Java Vector that will
hold all the components to be placed inside the container.
This class implements the LayoutManager2 interface in the
java.awt package and must implement several methods to
function properly as a layout manager. In the case of our lay-
out manager, the most important methods of the interface
that need to be defined are addLayoutComponent and
layoutContainer. The Java Virtual Machine (JVM) calls
addLayoutComponent when a program calls the add method
(Component comp, Object constraints) to add a component
to a container. For the AttachmentLayout manager, an object
may be added to a container by calling the add method with
the component to be added and an instance of the
Attachment class as the constraint object.

As can be seen in Listing 2, the addLayoutComponent
method takes the input component and adds it to the list of
components in the container. This list is used in the
layoutContainer method, which is the real guts of the
AttachmentLayout class. It’s called by the JVM to do the actu-
al rendering of the container. This method computes the
dimensions and the location of every component of the con-
tainer. The first function the layoutContainer method per-

FIGURE 1 A button has its right side attached to the container

Left Attachm
ent Ri

gh
t A

tt
ac

hm
en

tTop Attachment

Bottom Attachment

Container

ButtonButtoutto Attached

Pixel offset

Java COM

10 MAY 2001

ee

e

e e

e

“...the AttachmentLayout

manager

versus the

GridBagLayout

manager”

Java COM

forms is to loop through every component in the container. If
the component has an attachment to the container, it com-
putes the upper-right and lower-left locations of the compo-
nent based on the information stored in the component’s asso-
ciated instance of Attachment. From these two positions, the
width and height can be calculated and the component can be
placed inside the container with the proper spatial relation-
ship to the container.

The second function of layoutContainer is to determine the
component’s relationship to other noncontainer components
that it has attachments with inside the container. Again, loop-
ing through all components does this, and if it has a noncon-
tainer attachment, it computes its upper-right and lower-left
positions based on the components associated instance of
Attachment. The remaining methods of AttachmentLayout are
required by the LayoutManager2 interface, but as these are sel-
dom used they’re left to the reader.

Example
Figure 2 shows a simple GUI made using javax.swing com-

ponents. The white area is a JPanel named mainPanel and con-
sists of a JLabel. Along the bottom of the GUI are two JButtons
named Button 1 and Button 2. The main emphasis of a GUI of
this kind is usually the contents of the large mainPanel, so it’s
afforded the largest area of the GUI. The content pane of the
JFrame uses an AttachmentLayout manager to position
mainPanel. The desire is to have mainPanel expand in every
direction as the JFrame is resized. The following lines of code
demonstrate how this is done.

Container p = JFrame.getContentPane();

p.setLayout(new AttachmentLayout());

p.add(mainPanel,new

Attachment(5,p,5,p,10,button1,5,p));

The first line of code gets the content pane of the JFrame. All
components added to a JFrame are actually added to its content
pane. Line 2 instructs the content pane to use an Attach-
mentLayout for its layout manager. Line 3 adds mainPanel to the
content pane. Notice that the second argument to the add()
method is an instance of the Attachment class. This form of add()
is necessary since AttachmentLayout implements the
java.awt.LayoutManager2 interface. The instance of Attachment
has eight parameters. The first two parameters (5,p) tell
AttachmentLayout how to construct the left attachment of

mainPanel. The integer 5 is the number of pixels that will always
be between mainPanel and the component it will be attached to
on its left side (e.g., the content pane of the JFrame). The next two
parameters are also 5 and pane. They tell the AttachmentLayout
how to construct the right-side attachment of mainPanel.
Parameters 5 and 6 describe the bottom attachment. In this case
we want mainPanel to be spaced 10 pixels above Button 1. The
mainPanel could also have a bottom attachment to Button 2 to
provide the same results. And finally, the last two parameters
construct the top attachment of mainPanel, always 5 pixels from
the top of the content pane.

Along the bottom part of the GUI are Button 1 and Button
2. This GUI’s intent is to have both buttons stay the same size
and in relatively the same location during the resizing of the
JFrame. Both buttons are also added to the content pane using
the AttachmentLayout manager. The following lines of code
demonstrate this:

pane.add(button1, new

Attachment(5,p,0,null,5,p,0,null));

pane.add(button2, new

Attachment(0,null,5,p,5,p,0,null));

The first line of code adds Button 1 to the content pane. It
will be spaced 5 pixels away from the content pane on the left
and bottom. The right and top attachments are set to null since
we don’t want the width or height to change as the frame is
resized. Button 2 is added in a similar fashion but with attach-
ments on the right and bottom. If you don’t want to change a
component’s width or height, the size of the component must
be set using the setSize() method of the component before it’s
added to the container. If this method isn’t called before it’s
added, the preferred size of the component is used. Otherwise
the component would still be placed inside the container, but
at a default width and height of zero (see Listing 3 for the com-
plete example).

Figure 3 shows the same GUI as in Figure 2 but the screen-
shot was taken after the JFrame increased in width and height.
Notice the sizes and placement of the components in Figure 3
as compared to Figure 2.

As mentioned previously, this same GUI could be con-
structed using GridBagLayout. Listing 4 shows the steps neces-
sary to construct the same GUI via GridBagLayout. It requires
the use of a helper class, similar to Attachment.java, called
GridBagConstraints. GridBagConstraints keeps track of all the
characteristics describing the placement of a component
inside a container. In our example, mainPanel required the use
of eight different parameters and one class just to describe its
placement.

For each button it also takes eight parameters and one
class. The BuildConstraints() method simplifies the construc-
tion of the settings of the cell location, size, and proportions of
the container it will fill. Using this method reduced the amount
of code necessary to construct the GUI. Other

12 MAY 2001

FIGURE 2 Sample GUI

FIGURE 3 GUI after JFrame is increased

Java COM

16 MAY 2001

GridBagConstraints parameters to consider are the
anchor and the fill. They tell the layout manager how
they’re positioned within the container and how they fill
cells. Note that in GridBagLayout, components are
placed in a grid of cells. The cells don’t have to be the
same size, which makes it even more difficult to mental-
ly visualize the container layout. Finally, both buttons
required an instance of the Inset class to be set inside the
GridBagConstraints object in order to have the proper
padding around the buttons.

The use of our simple GUI example provides a clear
picture of the relative ease in using the At-
tachmentLayout manager versus the GridBagLayout
manager. The AttachmentLayout manager essentially

required only four lines of code to arrange the main
panel and both buttons in the JFrame’s content pane. In
comparison, using the GridBagLayout required 18 lines
of code and a helper method (seven additional lines and
two instances of the Inset class).

Using AttachmentLayout, this example GUI can be
easily visualized and the code written in less than five
minutes. Constructing the same GUI, but using
GridBagLayout, took at least twice as long and the use of
a manual to remember all the options.

AttachmentLayout was also easier to use than the
BorderLayout and the BoxLayout manager. The
BorderLayout required seven lines of code and the
BoxLayout required eight to produce the exact same
GUI, but both of these required the use of additional
panels and layout managers.

Limitations
As with all layout managers, the AttachmentLayout

manager has its limitations. It’s good for simple GUIs
that may not be easily handled by other layout man-
agers. More complex GUIs will require a layout manager
such as the GridBagLayout. Also, it should be used only
when components inside a container don’t depend on
the resizing of other noncontainer components that it is
has an attachment to. This limitation is what some expe-
rienced Motif/X-Windows developers know as circular
dependency. As an example, if Button A has a right-side
attachment to Button B and Button B has a left-side
attachment to Button A, there’s a circular dependency.
Circular dependencies will produce unexpected results
and in some implementations of Motif/X-Windows they
will produce an infinite loop. In our case the size and
placement of both components depends on the changes
of the other, but only one will take effect, depending on
the order in which the components were added to the
container.

Summary
In my five years of Java programming I’ve been

required to construct relatively simple user input or
informational display GUIs on many occasions. But I
never have quite the perfect, easy-to-use layout manag-
er that would help me construct my GUI in the shortest
amount of time.

The basic layout managers that come with Sun
Microsystems’ JDK cover both ends of the spectrum
when it comes to use and functionality – easy and simple
to hard and complex. The simpler ones are GridLayout,
FlowLayout, and BorderLayout. The harder and more
complex one is the GridBagLayout. BorderLayout or
BoxLayout can produce our simple example GUI or
more complex GUIs, but will require the use of addition-
al nested panels and layout managers. Attach-
mentLayout.java with its concept of attachments is a
simple layout manager, but with a different kind of capa-
bility, and as such it’s another useful tool that can be put
in the GUI developer’s arsenal.

AUTHOR BIO
Valor Dodd is a Java-certified senior software engineer at Lockheed Martin in
Denver, Colorado. He has more than 20 years of software experience developing
computer graphics and GUI applications for the telephone and defense industries.

vsdodd@mho.com

Java COM

18 MAY 2001

To interoperate using XML, you either
have to build an infrastructure around it
or incorporate it into an infrastructure
that already exists. While other folks build
yet another infrastructure around XML,
we show in this column how XML has
been incorporated into the enterprise-
ready, mature CORBA infrastructure. This
is CORBA Corner, after all.

The W3C has supplemented XML
with the Document Object Model
(DOM), defined in OMG IDL. OMG
members used the DOM as the basis for
their XML mapping, but made one
change along the way: instead of keep-
ing the representation of each node in
the XML document tree as a full-blown
CORBA object, OMG’s version repre-
sents a node as a CORBA valuetype.
Passable by value but not a first-class
CORBA object, the valuetype is the
CORBA multilanguage equivalent of the
Java serializable. And valuetypes are tai-
lor-made to represent an XML docu-
ment’s structure: graphs of valuetypes,
sent over the wire by including their root
node (or any node, if the node structure
links both up and down the tree) in the
argument list of a CORBA call, will be
reconstructed properly, in their entirety,
at the receiving end. Send an XML docu-
ment to a remote application and sud-
denly all navigation up and down its tree
is done with local invocations instead of
dozens of network round-trips.

In this article we investigate OMG’s
XML/value mapping and the things it

lets us do with our XML documents.
More than just a bridge between XML
and CORBA – although it certainly is all
of that – the valuetypes and their struc-
ture provide such an elegant API into the
XML document (structure and content
alike) that (in our opinion, anyhow) this
deserves to be the way everyone works
with XML content from a program, even
in a non-CORBA environment. Here’s
what you can do with XML documents
using the mapping:
• Create a new XML document from

scratch.
• Read in an existing XML document

from storage or from the network.
• Parse the document into a multiply

linked list of CORBA valuetypes.
–Parsing can be done dynamically if

there’s no DTD with structural infor-
mation about the document.

–Parsing can take advantage of a DTD
if there is one.

–If the document and DTD versions
are out of synchronization, the pars-
ing can take advantage of the DTD as
far as it goes.

• Edit the document, including adding
or deleting elements; adding, delet-
ing, or changing attributes; and edit-
ing text.

• As a linked list of valuetypes, the doc-
ument may be sent around the net-
work in CORBA calls with its structure
intact. This includes secure, transac-
tional CORBA calls and asynchronous
calls using CORBA messaging. This is
a great way to send XML data in an
invocation.

• Serialize the in-memory representa-
tion, generating a revised version of
the Unicode-based XML format docu-
ment that you’re used to.

We don’t have space to demonstrate
all of these, but we’ll look at as many as we
can in the form of a programming exam-
ple. We haven’t included the specification
details here to save room for example
code, which isn’t available free off the Web
as the specification is. To get the specifica-
tion, download doc.omg.org/orbos/00-
08-10 (the specification document) and
doc.omg.org/orbos/00-11-01 (zipped IDL
file). Where the two files disagree, the IDL
in the zip file supersedes.

Listing 1 is an example XML docu-
ment that we use throughout this arti-
cle. If your XML knowledge is a little
hazy, point your browser to www.
w3.org/XML. And to learn about the
DOM, surf to www.w3.org/DOM.

Initializing and Reading the Document
We’re not going to list the code that

gets us started in XML document pro-
cessing mode. Instead, we’ll just list
what we did:
• Representation of XML documents as

strings: Even though both XML and
Java use Unicode, CORBA represents
XML as a special DOMString type
(typdef’d to sequence<short>). Why?
Because you can use CORBA to go
from any language to any other. Pass a
Java string to a C program and you
(probably) end up with an array of 8-
bit chars; pass it to COBOL (unlikely,
we admit, but possible) and the sys-
tem attempts to translate your
Unicode into EBCDIC! Yucko. So
we’ve created a convenience function
makeDOMString that converts a Java
string into the programming lan-
guage–independent DOMString type.

• Reading in the document: We read the
document in as a Java string and con-

Working with Dynamic
XML Documents

WRITTEN BY
JON SIEGEL

XML gets mentioned a lot as an interoperability “platform.” By
itself, of course, XML can’t be a platform because it’s a document
format. It may be flexible, human-readable, dynamic, popular, and
cool because it looks a lot like HTML, but it’s still just a document
format, and there are a lot of differences between a document for-
mat and an interoperability platform.

What XML/value mapping lets us do

C 0 R B A C O R N E R

This article is condensed from the forthcoming
book Quick CORBA 3 by Jon Siegel, ©2001 by
Object Management Group, and appears here
by permission.

Java COM

20 MAY 2001

C 0 R B A C O R N E R

verted it into a DOMString.
• Parsing the document: The parser is

defined by the specification and sup-
plied with your implementation. After
locating the parser (probably via a call
to resolve_initial_references), you
invoke, for example,

Document PO_doc =

parser.parse(PO_Stream);

• Error checking: The XML specifica-
tion requires a parser to return an
error, with no partial results, if a docu-
ment contains even one XML struc-
ture/format error. (It doesn’t care if
you had the price of the bolts wrong,
though.) The OMG specification is
well prepared for this, with its defini-
tion of exception XMLException and
38 specific parsing error codes (num-

bered 2 through 39, of course). You
should definitely check for these
errors on return from parse.

On return from parse, if the routine
found no errors during parsing, our doc-
ument is stored in a multiply linked list
of valuetypes starting at the root node
PO_doc. Now let’s do some things with it.

Editing the XML Document
If we’re the company writing the PO,

we need to edit it – adding or deleting
items, changing quantities or POitem
numbers or names, or whatever. To our
programmer, the XML/value mapping
structures the PO data to make it all easily
available; using these program structures,
the programmer will present the data to
our clerk for editing via a GUI. The opera-
tion getElementsByTagName returns a list

of Elements selected by Tag Name (duh!),
so we’d probably start by retrieving all
(that is, both) of the POitems this way:

DOMString name =

makeDOMString("POitem");

// Retrieve items in Purchase

Order:

NodeList elms =

PO_doc.getElementsByTagName

(name);

Now elms, a sequence of Nodes, con-
tains two elements – the two items in
our Purchase Order. Each contains four
child elements – the POitem_name,
POitem_number, POitem_size, and
POitem_quantity. We could easily dis-
play a POitem in a window for editing, or
count the number of POitem nodes that
we got back and display the number on
the screen, or print it for confirmation
when we print the PO.

Changing the Text in an Element
The specification uses OMG IDL

attributes, which aren’t the same as XML
attributes. Here’s a quick review in case
you forgot how IDL attributes work: if
you declare a variable to be an IDL
attribute, the IDL compiler generates a
get and set operation for it automatical-
ly (unless you declare it read-

...the valuetype is the

CORBA multilanguage equivalent of

the Java serializable.
And valuetypes are tailor-made to represent an XML document’s structure

“

’’

Java COM

22 MAY 2001

C 0 R B A C O R N E R

only, which eliminates the set opera-
tion). The get and set operations are
mapped to programming languages just
like all other operations. The Java map-
ping overloads the operations on the
name of the variable: if you include an
input argument, it’s a set; leave it out
and it’s a get.

To demonstrate how we can change
the text associated with a particular ele-
ment, let’s change the quantity of Bolt
POitem_number B01420 to 150 gross.
Listing 2 contains the code in a single
block, with a few comments. The rest of
this section explains it in more detail.

After defining two DOMStrings for
use later, we start our loop over POitems
in elms. elms.item(i) returns the ith
Node in NodeList elms. (The operation
name item comes from the XML/Value
specification and has nothing to do with
the fact that we’re retrieving a POitem.)
elms.item returns a Node; we have to
cast the return value to an Element in
order to assign it to element POitem.

Each POitem element has four chil-
dren, tagnamed (from the strings in our
XML document) POitem_name,
POitem_number, POitem_size, and
POitem_quantity. getElementsByTag-
Name returns a list, so we declare ino
and iqty to be NodeLists even though
we’re certain that only one element is

going to come back from each call here.
After checking that we have a valid
POitem (even though we didn’t bother to
check that we had a valid PO!), we’re
ready to check and change the number
of items we want to buy.

One of these lines of code (at least!)
needs a little explanation. It’s this one:

if

(((Text)(ino.item(0).firstChild()))

.data().equals(checker))

The four Element valuetype children
of POitem that we’re working with here
don’t contain text – they have children
that contain the text. Here’s how we bur-
row down to the text itself.

ino is a one-element NodeList con-
taining our POitem_number. item is the
operation defined by the specification
on NodeList that returns an item in the
list by index number. (Once again, the
operation name item has nothing to do
with its being an item on our PO.) So
ino.item(0) returns the first Element in
our (one-element!) list.

Fortunately for us, this Element (and
its brothers and sisters) has only a single
Text Node, so we can retrieve it using the
get operation of the readonly attribute
Node firstChild defined on the Element.
In Java the get operation for an attribute

maps to the name of its parameter so the
operation firstChild gets that node.

The firstChild is a Text Node, so we
have to cast it to (Text) in order to
retrieve the text from it.

The text that it contains is in attri-
bute data, so we can retrieve it using the
get operation for data, which in Java
maps to the operation name data.
Fortunately it’s a DOMString, the same
type as checker, so we don’t have to do
any more casting to do the comparison.
Phew!

Naturally, we’ve strung all of these
fetch operations together in a single line
of code to show you how elegantly you
can program with this specification and
Java!

In the next line of code (not counting
the comments) we use the set operation
of the attribute data of the Text Node of
the POitem_quantity Element to set the
new quantity. Except for this, the tricks
in this line are the same ones as in the
line above it.

Adding a New Element
We can add a new element easily.

Operations to create new Nodes of all
types – that is, Node factories – are
defined on our root Document node, so
we invoke on PO_doc to create Elements
and the Text Nodes. When you create an

Java COM

24 MAY 2001

Java COMJava COM

C 0 R B A C O R N E R

Element, you specify its tagName; when
you create a Text Node, you pass in its
text data.

Passing the Document in a CORBA Invocation
To pass our document as a tree of

valuetypes, all we have to do is insert the
root node as an argument in a CORBA
call. For example, suppose our purchas-
ing department runs a server that sup-
ports the operation PlaceOrder with this
IDL:

Interface PurchasingServer {

Document ThisPO;

boolean PlaceOrder(in

dom::Document order);

};

In this operation ThisPO is a Doc-
ument valuetype, and is an input argu-
ment to the CORBA invocation
PlaceOrder. (We’re not executing one of
the Document methods.) When our
client application invokes, in Java, the
code in Listing 3, the entire purchase
order tree gets sent over the wire to the
server where it gets reconstructed exact-
ly as it was in the client application, even
though we’ve only included the root
Document node of our purchase order in
the argument list of PlaceOrder. This fol-
lows from the representation of the doc-
ument node tree as a multiply linked list.

Writing Out the New or Revised XML Document
Once your user finishes editing the

PO, you may want to write it out as an
XML data file in Unicode. The operation
to do this, serialize, is parallel in form to
the parse operation discussed at the
beginning of this article. Also, like the
parse operation, serialize doesn’t exist in
the DOM at either Level 1 or Level 2.
DOM Level 3 is supposed to introduce
this functionality when it arrives.

Flyweight Pattern
It’s not much of an issue for short

XML documents, but long ones that
repeat elements many times (and some
documents may have hundreds, thou-
sands, or even more instances of a given
element) use up many bytes repeating
element name text. The XML/value map-
ping uses the flyweight pattern to con-
serve this space: one instance of each
element name (and other types of
repeated text) is saved in an indexed
array, and only the index number is
saved with each element. The array is
another valuetype, included in the struc-
ture of the document, so it goes over the
wire along with everything else when you
ship your valuetype tree around.

What About Documents with DTDs?
The specification treats static docu-

ments – that is, documents defined by a
DTD – very well indeed, generating not
only the IDL for a set of document-spe-
cific valuetypes but also their imple-
mentation. All you have to do is program
the editing operations around these ele-
ments tailored to your DTD. We think
the static mapping will be used a lot
more than the dynamic mapping, but
we had to present this first because it’s
the foundation for the static, which is
based on the dynamic valuetypes with

DTD-specified names. We’ll present the
static mapping in an upcoming column,
so watch for it.

Acknowledgments
I’d like to thank Alan Conway and

Darach Ennis of IONA Technologies,
who wrote the example code for our
sample XML file and answered many
questions about the specification as we
wrote the book chapter from which this
article is excerpted.

<purchase_order company="Enjay Manufacturing" number="01239876">
<ship_to_address>

<street>21 Pine Street</street>
<city>Cleveland</city>
<state>OH</state>
<postcode>44113</postcode>

</ship_to_address>
<POitem_list>

<POitem>
<POitem_name>bolt</POitem_name>
<POitem_number>BO1420</POitem_number>
<POitem_size>1/4X20</POitem_size>
<POitem_quantity>120gross</POitem_quantity>

</POitem>
<POitem>

<POitem_name>nut</POitem_name>
<POitem_number>NU14</POitem_number>
<POitem_size>1/4</POitem_size>
<POitem_quantity>120gross</POitem_quantity>

</POitem>
</POitem_list>

</purchase_order>

// Modify any Bolt items quantity values to 150 gross
// where their POitem_number is 'BO1420'
DOMString checker = makeDOMString("BO1420");
DOMString change = makeDOMString("150gross");
// Loop over the items in our PO:
for (int i = 0; i < elms.length(); i++)
{

Element poItem = (Element)elms.item(i);
// ino is the POitem_number element for this poItem:
NodeList ino =

poItem.getElementsByTagName(makeDOMString("POitem_number"));
// iqty is the POitem_quantity element for this poItem:
NodeList iqty =

poItem.getElementsByTagName(makeDOMString("POitem_quantity"));
if (ino.length() != 1 || iqty.length() != 1)
{

System.err.println("Invalid purchase Order");
System.exit(1);

}
// This next line is explained in detail in the text
if (((Text)(ino.item(0).firstChild())).data().equals(checker))
{

// Compare successful: this poItem needs its gross changed
((Text)(iqty.item(0).firstChild())).data(change);

}
}

{
// Retrieve a purchasing server object reference
// from the naming service...
PurchasingServer server = whatever;
// Set up the document root of our PO tree structure:
//
dom.Document thePO = whatever; // set equal to our PO document root
// Here we go...
if (server.PlaceOrder(thePO)) // this line sends the entire document
{

// Success!
}
else
{

// Whoops.
}

}

Listing 3

Listing 2

Listing 1

AUTHOR BIO
Jon Siegel, PhD, is director
of technology transfer at

OMG where he writes
and teaches about

OMG’s specifications:
CORBA, the

CORBAservices and
CORBAfacilities, and the
modeling specifications

UML, the MOF, XMI, and
the CWM. He is the
author of CORBA 3

Fundamentals and
Programming and the

new book, Quick
CORBA 3 (Wiley), from

which this article
was condensed.

siegel@omg.org

Java COM

26 MAY 2001

Thus, in constrast to most design patterns that help break the system
up into subsystems, the facade design pattern rolls up a complex subsys-
tem into one, easy-to-use system. A facade can provide a simple default
view of the subsystem that’s good enough for most clients. Only clients
needing more customizability will need to look beyond the facade.

Why Does JMS Need It?
JMS serves as an excellent foundation for enterprise applications.

Although the JMS API is very concise, using JMS effectively can be chal-
lenging and there are many potential booby traps that novice users may
fall prey to. Furthermore, it may not be very appealing to force every
developer in your organization to learn JMS. Most organizations would
avoid the above “issues” by creating a reusable library (i.e., a facade) that
encapsulates all the JMS-related code/knowledge. Unfortunately, even
this library would require a learning curve, albeit a smaller one (hope-
fully).

In this article I present an alternative approach based on the Java
protocol handler architecture. The major advantage of this approach is

that most Java developers are already familiar with using this architec-
ture via the URL class in the java.net package. For example:

URL url = new URL("http://www.javasoft.com/index.html");

An additional, and by no means minor, benefit is that this is a time-
tested architecture built into the Java language/platform itself. Best of
all, this architecture is flexible enough to allow the “plug-in” of new pro-
tocol (handlers). That’s exactly what I demonstrate in this article by cre-
ating a protocol handler for JMS.

This JMS protocol handler will make programming with JMS as sim-
ple as the example shown in Listing 1.

Notice that Listing 1 doesn’t contain any JMS-specific code. In fact, the
only giveaway is that the name of the protocol is “jms” in the URL; otherwise
the code is exactly the same as that for HTTP or FTP from a Java program.
The JMS protocol handler takes care of all the JMS grunt work for us. After
all, that’s what a good facade is supposed to do, right?

An Overview of the Protocol Handler Architecture
One of the benefits of using Java is the excellent support it provides

for networking. Not only is this support extensive, but it’s easy to lever-
age, in most cases requiring the developer to master only a few classes,
such as the java.net.URL class. This support is built on top of an elabo-
rate (and extensible) architecture called the Java Protocol Handler archi-

Java COM

Java COM

28 MAY 2001

tecture. In this section I discuss this architecture and how to extend it
with your own protocol handler. Then in the next section, we actually
implement a JMS protocol handler using this knowledge.

The gateway to this architecture is (you guessed it) the java.net.URL
class, which encapsulates a URL string. The general form of a URL is:

protocol://host:port/filepath#ref

Examples include “http://www.javasoft.com/index.html” or “file:
///C:/temp/junk.txt”. (The three slashes “///” is not an error; you’ll see why
in a moment.) In the first example, the protocol is HTTP, the host name is
www.javasoft.com, and the filepath is index.html. Since no port number
has been specified, the protocol handler will use a protocol-
specific/default port, which in this case will be port number 80. In the sec-
ond example, the protocol is file and the filepath is C:/temp/junk.txt. Note
that in this case neither the host name nor the port number has been spec-
ified (which would have been between the second and third slashes), so the
file protocol handler will use protocol-specific/default values for these.

As an aside, the format of the URL string for the JMS protocol will be:

jms://Queue/<QueueName>

or

jms://Topic/<TopicName>

Note that the JMS protocol does not have a concept of a host name,
port number, or filepath. Instead the host name is actually the messag-
ing style and the filepath is the destination.

The URL class does not know how to access the resource stream rep-
resented by the URL string. Instead, it relies on a set of other classes to
handle this. When a new URL class instance is created it resolves the URL
string to a protocol-specific handler (e.g., the protocol handler class).
This protocol handler knows how to create a connection to the resource
represented by the URL string and return an object corresponding to this
connection. Since this resolution occurs at construction time, any
attempt to construct an instance of URL with an unknown/invalid pro-
tocol will throw a MalformedURLException during the construction
itself. The relevant portion of the URL constructor is shown below:

if(handler == null &&

(handler = getURLStreamHandler(protocol)) == null) {

throw new MalformedURLException(

"unknown protocol: " + protocol);

}

I’ll discuss the getURLStreamHandler method in detail later in this article.
Sun provides protocol handlers for several standard and widely used

protocols such as HTTP, FTP, mailto, and Gopher. Protocol handlers
must follow a strict naming convention. The class must always be named
Handler. The package name must always have the protocol name as its
last part. For example, Sun’s protocol handler for the HTTP protocol is
called Handler and is in the package sun.net.www.protocol.http. Note
that the package name ends with “http”. In our case the “jms” protocol
handler will be in the jmsbook.jms package and will be called Handler.
To make the Java runtime aware of your own protocol handlers, you

must use the java.protocol.handler.pkgs system property. This property
is set equal to a “|” delimited list of package name prefixes. These prefix-
es will be used to resolve the specified protocol name to a protocol han-
dler object. Note that these package names must not include the last
part (e.g., the protocol name). So in our case this property will be set to
jmsbook (and not jmsbook.jms), as follows:

java.protocol.handler.pkgs=jmsbook

The getURLStreamHandler Method
Why does Java impose such a strict naming convention for protocol

handlers? The answer is found by examining the URL class source code,
more specifically the getURLStreamHandler method implementation,
which is called to resolve a protocol name to the corresponding protocol
handler. The relevant portion of this method is shown in Listing 2. Read
the inline comments for the explanation of the code fragment.

Only one protocol handler object is created per VM per protocol. A new
protocol handler is created the first time it’s required and is then cached for
later use. This means that multiple threads may use the same protocol han-
dler simultaneously. Thus the protocol handler implementation must be
thread- safe. The URL class instance caches the protocol handler in a static
hash table, which allows any URL instance to access this handler. To get a bet-
ter feel for this, let’s take a look at the remainder of the getURLStreamHandler
method. Once again, read the comments for the explanation (see Listing 3).

The openConnection and openStream Methods
At this point the URL has successfully resolved the protocol string to a

protocol handler. The openConnection method may be used to gain
access to a connection object. A connection object must implement the
URLConnection interface and is used to send and receive data to and from
the resource stream, respectively. The URL instance merely delegates the
openConnection method call to the protocol handler as shown below:

public URLConnection openConnection()

throws java.io.IOException {

return handler.openConnection(this);

}

The URL class also provides a helper method, openStream, for clients
interested only in receiving data from the resource stream. This method
is shown below:

public final InputStream openStream()

throws java.io.IOException {

return openConnection().getInputStream();

}

Our JMS Protocol Handler
As discussed above, the URL class serves as the gateway into Java’s

protocol handler architecture. The URL class itself has very limited func-
tionality beyond resolving a protocol string into a protocol handler.
There are two key pieces that a protocol handler implementer must pro-
vide/implement: a Handler class and a URL Connection class. Having
said that, let’s take a look at the implementation for our JMS protocol
handler. A class diagram showing all the pieces of the JMS protocol han-
dler architecture and how they fit together is shown in Figure 1.

NOTE: This article is based on a chapter in Tarak Modi’s upcoming book The Essence of JMS: A Developer’s Guide (to be published by Manning Publications). According to the
author, the actual chapter includes a much more detailed discussion of the concepts presented in this article along with the complete source code for the JMS protocol han-
dler and associated test programs. Modi has offered to provide the complete source code and test programs to all JDJ readers who request them from him at tmodi@att.net.

Java COM

Java COMJava COM

30 MAY 2001

The Handler Class
As with all protocol handlers, the JMS protocol handler conforms to

the following rules:
1. The class name is Handler.
2. It extends the URLStreamHandler class and provides a concrete

implementation of the openConnection abstract method.
3. Its package name has the protocol name as its last part (i.e., it’s in a

package whose last part is “jms”. In our case the handler is in the jms-
book.jms package.

Since the JMS protocol handler extends the URLStreamHandler class,
it must provide an implementation of the openConnection method. The
openConnection method is responsible for returning a connection object
(an instance of JmsURLConnection, which we’ll see next) to the caller. The
caller may then use this connection object to access the resource stream.
The handler decides how to initialize the JmsURLConnection object based
on the host name portion of the URL as shown below in pseudo-code:

// pseudo-code

if(u.getHost().equals("Queue"))

return a new JmsURLConnection to use with JMS Queues.

else if(u.getHost().equals("Topic"))

return a new JmsURLConnection to use with JMS Topics.

else

throw new IOException("Host name must be Topic or

Queue.");

Configuring the Handler
The handler has two member variables that must be initialized: a ref-

erence to a queue connection and a reference to a topic connection.
These references are obtained via a queue and a topic connection facto-
ry, respectively. The JMS specification does not define a standard way of
getting the initial queue and topic connection factories. As a result, each
vendor that provides a JMS-compliant messaging product must define
its own way of allowing clients to get these initial connection factories.
One of my primary design goals is not to get tied to a specific JMS
provider. To achieve this I must isolate any vendor-specific code so that
it does not affect the core architecture and can easily be replaced and
tested. I have defined two interfaces, JmsQueueConnectionFactory and
JmsTopicConnectionFactory, which are shown below:

public interface JmsQueueConnectionFactory {

public javax.jms.QueueConnectionFactory

getQueueConnectionFactory(java.util.Properties props)

throws javax.jms.JMSException;

}

public interface JmsTopicConnectionFactory {

public javax.jms.QueueConnectionFactory

getQueueConnectionFactory(java.util.Properties props)

throws javax.jms.JMSException;

}

These interfaces are defined in the jmsbook.jms package. Both have one
method each. For example, the JmsQueueConnectionFactory interface has
a method called getQueueConnectionFactory that returns the initial queue
connection factory. This method gets an instance of a java.util.Properties
object as its parameter, which contains all the vendor-specific messaging
product information that the class implementing this interface will require
to get the queue connection factory. One such class that implements the
JmsQueueConnectionFactory interface is created for every vendor’s mes-
saging product that’s to be supported. An example of such a class for Sun
Microsystems’ Java Message Queue product is shown below:

package jmsbook.jms

public class SunJmsQueueConnectionFactoryImpl

implements JmsQueueConnectionFactory {

public javax.jms.QueueConnectionFactory

getQueueConnectionFactory(java.util.Properties

props) throws javax.jms.JMSException {

javax.jms.QueueConnectionFactory factory =

new com.sun.messaging.QueueConnectionFactory();

return(factory);

}

}

Similarly, an example of a topic connection factory class for Sun
Microsystems’ Java Message Queue product is shown below:

package jmsbook.jms

public class SunJmsTopicConnectionFactoryImpl

implements JmsTopicConnectionFactory {

public javax.jms.TopicConnectionFactory

getTopicConnectionFactory(java.util.Properties

props)

throws javax.jms.JMSException {

javax.jms.TopicConnectionFactory factory =

new com.sun.messaging.TopicConnectionFactory();

return(factory);

}

}

The JMS protocol handler class is configurable through a
properties file, the name of which is specified in the jms-
book.jms.propertiesFile system property. An example is
shown below:

java -

Djmsbook.jms.propertiesFile=C:/temp/jmsProtocol.

properties

. . . the rest of the java command

The properties file must have two properties,
JmsQueueConnectionFactory and JmsTopicConnection-FIGURE 1 The JMS protocol handler architecture

interface

URL StreamHandlerFactory

URL StreamHandler

Handler

URL Connection

JmsURL Connection

URL

port:int
protocol:String
host:String
file:String
ref:String
content:Object

-JmsOutputStream
-JmsInputStream

inputStream:InputStream
outputStream:OutputStream

Java COMJava COM

32 MAY 2001

Factory, that specify which queue and topic connection factory classes to
use. The properties file may contain any other properties in addition to these,
such as JMS provider-specific properties that may be used by the connection
factory class implementations. The handler loads the properties from the
properties file, creates a new instance of the specified factory class, and calls
the appropriate get method on the factory, passing the entire properties col-
lection to the method as its parameter. As a result, this method is able to gain
access to any JMS provider–specific properties defined in the properties file.
A sample properties file for configuring the JMS protocol handler to use Sun
Microsystems’ Java Message Queue product is shown below:

The factory to use to get the initial Connection Factory

JmsQueueConnectionFactory=

jmsbook.jms.SunJmsQueueConnectionFactoryImpl

JmsTopicConnectionFactory=

jmsbook.jms.SunJmsTopicConnectionFactoryImpl

Optional

Sun Microsystems’ Java Message Queue product specific

properties

.

.

.

Once the handler has references to the vendor’s connection factories, it
can get the queue and topic connections from these as specified by the JMS.

The JmsURLConnection Class
As you’ve seen before, the openConnection method in the JMS pro-

tocol handler class returns an instance of the JmsURLConnection class.
This class extends the URLConnection class and overrides the
set/getRequestProperty, getInputStream, getOutputStream, and con-
nect methods. I’ll discuss each one of these methods next.

The set/getRequestProperty Methods
Messages in JMS are associated with a delivery mode, a priority, and

a time-to-live. The JmsURLConnection class provides default values for
three “request” properties and allows the client (e.g., user) to configure
these properties at any point in time. The default values of these prop-
erties are shown below:

// The delivery mode; default is persistent.

private int persistence = DeliveryMode.PERSISTENT;

// The priority; default is 9 (highest)

private int priority = 9;

// The time-to-live; default is 0 (forever)

private int ttl = 0;

A client can get the value of any of these properties at any time by
calling the getRequestProperty method and passing in the name of the
property required. An example of querying the connection for the deliv-
ery mode is shown below:

// uc is a JmsURLConnection

String persistent = uc.getRequestProperty("persistent");

In the above code fragment, if the value of persistent is “true” after
the statement is executed, then the delivery mode is persistent. Note the
name of the persistence property is persistent. Similarly, to find out the
priority and time-to-live properties, call the getRequestProperty method
with the property names “priority” and “timeToLive”, respectively.

To change the value of any of these properties use the
setRequestProperty method. For example, to change the delivery mode
to nonpersistent, change the priority to 4, and change the time-to-live to
10 seconds:

setRequestProperty("persistent","false");

setRequestProperty("priority","4");

setRequestProperty("timeToLive","10000");

If an invalid property name or value is passed in to either of these
methods, a RuntimeException will be thrown.

The Connect Method
All this method does is set the connected member variable in the

base class to true.

public void connect() throws IOException {

this.connected = true;

}

Remember, all the connection-related work has already been per-
formed in the handler class, so we don’t need to do anything here.

The getInputStream Method
This method checks to see if the JMS connection it has is a queue or

a topic connection. Based on this it creates the appropriate session and
message consumer. It then creates a new instance of the
JmsInputStream class, passing in the session and the message con-
sumer. JmsInputStream is a private class that extends the
java.io.InputStream class and provides a concrete implementation of
the read method. When the client calls the read method’s (or a method
that results in the read method’s being called, such as readUTF,
readDouble, or any other <read> method on any decorating input
stream), it first checks if there are any more bytes in the buffer. If no
more bytes exist, it calls the private method readMessage. This method
checks if there are any more bytes remaining in a previous (partially
read) message. If no such message exists, it calls the receive method on
the message consumer that was passed in during construction.

The getOutputStream Method
This method checks to see if the JMS connection it has is a queue or a

topic connection and then, based on this, creates the appropriate session
and message producer. It then creates a new instance of the
JmsOutputStream class, passing in the session and the message producer.
JmsOutputStream is a private class that extends the java.io.OutputStream
class and provides a concrete implementation of the write method.

A client then calls the write method (or a method that results in the
write method’s being called, such as writeUTF, writeDouble, or any other
<write> method on any decorating output stream). A client can call
write as many times as needed. Finally, when the entire message is writ-
ten, the client must call flush to actually send the message. The flush
method will call the private writeMessage method that contains all the
logic for dealing with the message producer.

For example, let’s assume that a message consists of some basic
information about a person, such as name, age, and sex. Such a message
could be sent as shown in Listing 4.

A client could receive this message as shown in Listing 5.

Summary
Probably one of the most significant advancements in software engi-

neering in the past few years has been the widespread acceptance of

Java COMJava COM

34 MAY 2001

component-based programming and design by contract. I’ve absolutely
bought into these concepts and always emphasize designing your enter-
prise applications without relying on or getting married to a specific JMS
provider by remaining loyal to the JMS specification. In this article I’ve
taken the design-by-contract concept one step further by creating a
facade that allows you to decouple your application not only from spe-
cific JMS providers, but from JMS itself by using Java’s protocol handler
architecture. Additional (and by no means minor) benefits of this tech-
nique include a reduced learning curve for most Java developers, since
they’re already familiar with using URLs and the ability to leverage a
well-designed and time-tested architecture of the Java platform.

Reference
• Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design

Patterns – Elements of Reusable Object-Oriented Software. Addison-
Wesley.

AUTHOR BIO
Tarak Modi, a certified Java programmer, is a lead systems architect at Online Insight where he’s responsible
for setting, directing, and implementing the vision and strategy of the company’s product line from a techni-
cal and architectural perspective.Tarak has worked with Java, C++, and technologies such as EJB, Corba,
and DCOM, and holds a BS in EE, an MS in computer engineering, and an MBA with a concentration in IS.

tmodi@att.net

// create a new URL with our custom "jms" protocol.
URL url = new URL("jms://Queue/ModiQueue");
URLConnection uc = url.openConnection();

// Send a message
DataOutputStream dos =

new DataOutputStream(uc.getOutputStream());
dos.writeUTF("Hello!");
dos.flush();

// Receive the message
DataInputStream dis = new DataInputStream(uc.getInputStream());
String message = dis.readUTF();

// close the streams.
dos.close();
dis.close();

// Get the list of package prefixes
// protocolPathProp has been defined as
// "java.protocol.handler.pkgs"
String packagePrefixList = null;
PackagePrefixList = (String)
java.security.AccessController.doPrivileged(
new sun.security.action.GetPropertyAction(
protocolPathProp,""));

// Add the standard protocols package to the list!
// First, if any package prefixes were found, append
// another delimiter, "|", to the end.
if (packagePrefixList != "") {

packagePrefixList += "|";
}

// and now append "sun.net.www.protocol" to the end.
// Important:
// Since this package is appended at the end of user
// specified packages, a user can override any of the
// Sun provided protocol handler implementations, such
// as the one for http.
packagePrefixList += "sun.net.www.protocol";

// And now parse through the list…
// Remember, "|" is the delimiter.
StringTokenizer packagePrefixIter =

new StringTokenizer(packagePrefixList, "|");

// Keep going until either we get a handler or
// no more tokens remain.
// Note that there will always be at least
// one token, sun.net.www.protocol.
while (handler == null && packagePrefixIter.hasMoreTokens()) {

// Get the next token
String packagePrefix =
packagePrefixIter.nextToken().trim();

try {
// Create the fully qualified class name.

Listing 2

Listing 1

// Eg. jmsbook + jms + ".Handler"
String clsName = packagePrefix + "." +
protocol + ".Handler";

Class cls = null;
try {

// Now try loading the class with that name.
clsClass.forName(clsName);

}
catch (ClassNotFoundException e) {

ClassLoader cl =
ClassLoader.getSystemClassLoader();

if (cl != null) {
cls = cl.loadClass(clsName);

}
}
if (cls != null) {

// create a new instance.
handler = (URLStreamHandler)cls.newInstance();

}
}
catch (Exception e) {

// any number of exceptions can get thrown here
// move onto the next token…

}

} // while loop.

// This is the static hash table used
// to cache the protocol handlers.
// All access to this table must be synchronized.
static Hashtable handlers = new Hashtable();

static synchronized URLStreamHandler getURLStreamHandler(
String protocol) {

// Have we already resolved this protocol?
URLStreamHandler handler =

(URLStreamHandler)handlers.get(protocol);
// Maybe not…
if (handler == null) {
// Use the factory (if any)
// We will not consider this case.
// In a nutshell, a factory implements the
// URLStreamHandlerFactory interface and is
// registered with the URL instance either during
// construction or using the
// setURLStreamHandlerFactory method.
// A factory can only be set once and similar to the
// protocol handlers is shared by all URL instances.
if (factory != null) {

handler =
factory.createURLStreamHandler(protocol);

}

// still don’t have a handler…
if (handler == null) {
// All the logic to
resolve a protocol
// string to a protocol handler.
// Plug in the implementation that
// we saw above here

}

// Cache the handler if one was found.
if (handler != null) {
handlers.put(protocol, handler);
}

}

// Return the handler to the caller.
return handler;

}

// uc is a JmsURLConnection
// Wrap/Decorate the JmsOutputStream with a DataOutputStream
DataOutpputStream dos =
new DataOutputStream(uc.getOutputStream());

// Write the name (string), sex (string)
// and age (long) to the stream.
dos.writeUTF(name);
dos.writeUTF(sex);
dos.writeLong(age);

// send the message.
dos.flush();

// done
dos.close();

// uc is a JmsURLConnection
// Wrap/Decorate the JmsInputStream with a DataInputStream
DataInpputStream dis =
new DataInputStream(uc.getInputStream());

// Read the name (string), sex (string)
// and age (long) from the stream.
String name = dos.readUTF(name);
String sex = dos.readUTF(sex);
Long age = dos.readLong(age);
// done
dis.close();

Listing 5

Listing 4

Listing 3

Java COM

36 MAY 2001

The result is a landscape where devel-
opers can feel comfortable about writing
an application using a standard set of
APIs while still having an ample selection
of JMS-compliant vendors to choose
from. However, the JMS specification is
intentionally agnostic when it comes to
deployment architectures. Today’s B2B
environment requires much more than is
commonly dictated by the specification,
and all JMS vendors have been racing to
the finish line to build the additional
infrastructure to keep pace with the
demands of large-scale e-business mes-
saging deployment over the Internet.

In this article we’ll discuss some of
the real-world issues beyond the JMS
specification. In particular we’ll focus on
large-scale B2B deployments, and
explain how the “beyond JMS” capabili-
ties are a key component of the
Commerce One e-marketplace solution.

About Commerce One. . .
Commerce One, through its software,

services, and Global Trading Web of inter-
connected business communities,
enables worldwide commerce on the
Internet. They are the leading force
behind the Global Trading Web, the
world’s largest business-to-business glob-
al trading community, connecting thou-
sands of e-marketplaces around the globe.
Through Commerce One.net, Commerce
One provides the technology and business
services that allow these global trading
partners to work together sucessfully.

Commerce One’s solutions include:
• Enterprise Buyer: An e-procurement

application

• MarketSite: Assists Internet market
makers in building open market-
places and linking them to the Global
Trading Web

• MarketSet: Based on the MarketSite
platform; provides a specific set of
infrastructure and applications for
the direct goods and supply chain
management market segments

The JMS Specification
The JMS spec prescribes a clear set of

rules of engagement between an appli-
cation and an enterprise messaging
middleware. They include:
• Standard APIs for establishing con-

nections, and the sending and receiv-
ing of messages

• Loosely coupled asynchronous com-
munication between applications or
between components of applications

• A publish-and-subscribe model for a
one-to-many broadcast of informa-
tion, and a point-to-point queuing
model for establishing many-to-one
or a one-to-one conversational pipe
between distinct endpoints

• Quality of service options for mes-
sage delivery, including once-and-
only-once guaranteed delivery, at-
most-once delivery, all-or-nothing
transactional grouping of messages,
and guaranteed ordering; deter-
mined by a strict set of rules govern-
ing message persistence and store-
and-forward capabilities, which are
held together by a well-defined set of
message acknowledgement seman-
tics

• Failure conditions, error handling,

crash recovery, message redelivery
• A broad range of message types

capable of transporting any kind of
application data in a convenient
fashion, and a rich set of methods for
constructing and deconstructing
messages on either side of a conver-
sation

Beyond JMS: Requirements of
E-Business Messaging

Traditional MOM vendors built
products intended to carry data be-
tween a relatively small set of applica-
tions within the four walls of an enter-
prise. However, if you consider the kind
of messaging infrastructure that is capa-
ble of supporting the likes of the
Commerce One e-marketplace solution,
a whole new set of requirements is nec-
essary. Consider these requirements in
the context of the diagram shown in
Figure 1:
• Massive scalability: Concurrently

connecting tens of thousands of trad-
ing partners in a single trading
exchange, and connecting multiple
trading exchanges together

• Fault tolerance and high availability
• Geographically dispersed applica-

tions: Using the Internet as a means of
communicating in a secure and reli-
able fashion; being secure and fire-
wall-friendly via the use of Secure
Sockets Layer (SSL) and HTTP proto-
cols

• End-to-end security: Through the use
of PKI, digital certificates, mutual
authentication, Access Control Lists
(ACL)

Beyond the
JMS Specification

Real-world issues for large-scale B2B deployments

J 2 E E

Part 3 of 3
WRITTEN BY

DAVID CHAPPELL &
BILL CULLEN

The Java Message Service (JMS) is a specification put forth by Sun to
define a common set of APIs and common semantics for messaging-
oriented middleware providers. An increasing number of MOM ven-
dors have embraced this specification, and new vendors are building
messaging products suitable for doing business-to-business commu-
nication across the Internet.

AUTHOR BIOS
Dave Chappell is chief

technology evangelist for
Sonic Software’s SonicMQ,
and coauthor of O'Reilly’s

Java Message Service.

Bill Cullen has been
developing and managing
software projects for over

18 years. As director of
software engineering for

Sonic Software, he plays a
key role in engineering

the architecture and
performance for

SonicMQ, one of the first
products to implement

the Java Message Service
specification.

Java COM

38 MAY 2001

J 2 E E

• Segregation of application domains:
Protecting data that is private to an
application domain while still being
able to selectively expose message
queues to the other participants
across the domains; this is key,
whether communicating between
geographically dispersed locations
within a single company or between
trading partners participating in a
trading exchange

• Simple and flexible deployment con-
figurations: Separation of physical
deployment topology from the client
applications that use the messaging
system

• Server-to-server–based architecture:
Minimum number of “moving parts”
or processes reduces number of fail-
ure points and network hops; prefer-
able over an IP multicast architecture
when conducting business across cor-
porate boundaries. Considering the

number of gateways or bridges that
need to be installed/maintained in
order to move across firewalls and
network router boundaries, the per-
ceived benefits of IP multicasting
diminish quickly

Commerce One chose SonicMQ as
the way to connect these pieces. The
basic benefits of JMS, combined with
the e-business messaging capabilities of
the SonicMQ, allowed them to delegate
the responsibility of scalable, secure,
guaranteed delivery of data to a best-of-
breed JMS provider suitable for the task.

The key enabling technology that ful-
fills the e-business messaging require-
ments of this equation is referred to as
dynamic routing architecture (DRA)

Massive Scalability via DRA
DRA is a messaging server technolo-

gy that allows increased message vol-

umes to be handled as needed without
reconfiguring application programs or
requiring significant administrative
overhead. The DRA approach eliminates
the need to accommodate topology
changes and connectivity issues by
dynamically adjusting as needed to sup-
port changes in messaging configura-
tion. Additional message servers may be
added transparently to support addi-
tional external connections or to scale
up internal systems to handle increased
message traffic.

As illustrated in Figure 2, groups of
servers, called clusters, may connect to
other groups of servers as needed, creat-
ing highly distributed deployments
across loosely coupled locations. The
high throughput performance of each
JMS server minimizes the number of
servers needed in these configurations
to handle large messaging volumes.

DRA provides robust, on-demand
connection management to eliminate
excessive resource use on single servers
and the corresponding communication
infrastructure. Message senders and
receivers may be distributed dynamical-
ly across groups of servers to fully utilize
resources. DRA connections between
clusters enable distributed groups of
servers to communicate seamlessly
when needed. A connection may be
established only when there are mes-
sages to send, or may be connected con-
tinuously. DRA determines the best path
for a message destination dynamically
and creates a connection if necessary. As
connections are made, messaging desti-
nations dynamically become available
throughout the DRA system.

Hardware and communication fail-
ures are also handled by DRA, with
failover for connections and transparent
store-and-forward capabilities for desti-
nations that are temporarily unavail-
able. The features listed above allow
messaging servers to be deployed with
maximum efficiency while maintaining
high availability.

Parallel Cluster Technology
Parallel clustering allows clusters of

one or more servers to be created as
needed within the messaging infrastruc-
ture. Clusters allow multiple servers to
support as many JMS connections as
necessary, while providing transparent
cluster-wide access to messaging desti-
nations (see Figure 3).

The clustering architecture of DRA min-
imizes overhead through a loosely coupled
design. Topology and destination changes
are broadcast in parallel with participating
clusters and servers, minimizing overhead
as routing paths change dynamically.

FIGURE 1 Trading partners participating in a supply chain through an e-marketplace

Trading Partner
E-Markrk

tplace

Tr
ding Partner

Trading P rt er

E-

arketplace Portal
Application

Portal
Application

Portal
Application

Portal
Application

Partner
ApplicationA

Partner
Application

Partner
Application

JMS

JMS
JMS

JJMSJ

Partner
Application

Partner
Application

JJMS
Internet

In
te

rn
et

Internet

FIGURE 2 A distributed topology based on DRA

Trading Partner

Markrk

tplace

Tr
ding Partner

Trading P rt er

Markrketplace
Portal

Application
Portal

Application

Portal
Application

Portal
Application

Partner
ApplicationA

Partner
Application

Partner
Application

SServerS

Partner
plication

Partner
Application

JMS
Server

Internet

In
te

rn
et Internet

J SJMS
Server

JMSJMS
Server

Server Clusterrve luste

JMSS
ServerServer

JMS
erSServer

JMS
ServerServerSe

Java COM

40 MAY 2001

J 2 E E

Minimal administrative overhead
within and between DRA clusters results
in the full utilization of server capacity
for messaging tasks. Communication
between servers is predominantly used
to deliver messages, providing pre-
dictable, linear scalability as servers are
added to the cluster.

Active Route Optimization
DRA features active route optimiza-

tion, which allows named destinations
to be reached within the system by mes-
sage senders regardless of connection
and topology changes. The ability to
actively locate destinations by name
eliminates the need to reconfigure
application code as messaging servers
are changed or scaled to higher vol-
umes.

Active route optimization allows
clients to be distributed across multi-
ple servers and reach message destina-
tions dynamically from the server
they’re connected to, without configu-
ration. To handle additional connec-

tions for an application, a server may
be added at any location in a distrib-
uted system, which is immediately
used to handle additional client traffic
(see Figure 4).

Message routing is a key element of
the DRA server cluster technology.
Through routing, when a message desti-
nation is added, it’s immediately acces-
sible by all messaging clients regardless
of the machine within the cluster they’re
currently connected to. For example, a
new incoming connection from a trad-
ing partner can immediately be used
throughout the system to reach message
destinations at that trading partner.
Destinations within a firewall or across
the Internet are immediately available
throughout the cluster once they’re con-
nected with DRA.

As illustrated in Figure 5, active route
optimization is used to route a request
for a quote to an e-marketplace pricing
application, which then creates a mes-
sage destined for a supplier’s quote
application. The messages are delivered

through the optimal path to their
destination.

Active route optimization
enables applications to be run and
replicated as needed. Replication
allows application services to be
added to support increased appli-
cation traffic. Within a cluster,
duplicate destination names on
different servers may be created to
replicate application services on
multiple machines and achieve
high scalability. Messages will be
routed to the nearest application
service when received at a server
(see Figure 6).

Application services may be
configured to receive messages
from multiple messaging servers,
allowing additional load on one
message server to be handled on
demand by multiple application
services. On-demand load balanc-
ing ensures that no application
waits for work while any JMS serv-
er has messages available. On-
demand load balancing also en-
hances system resiliency; applica-
tion services continue operation in
the event of a message server
machine failure, and message
servers can continue to handle
clients if an application machine
fails.

DRA allows messaging servers
and application services to be
deployed in the topology most
suitable to achieve the perfor-
mance and resiliency necessary
for high-volume applications.

Multiple Cluster Configuration and Naming
Connections between servers allow

all destinations within a cluster to be
reached from other clusters. Each clus-
ter is given a routing node name that
uniquely identifies it within the rest of a
DRA-based system. Destinations are
named in a manner similar to e-mail
addresses.

Configurations with tens of thou-
sands of clusters can be supported
within a single naming system using
DRA. Unique destinations across a rout-
ing connection may be found by speci-
fying a routing node name and a desti-
nation name, allowing for unique
names to be created and reached on a
global scale. Destinations specified
without a node name are resolved with-
in the cluster to allow for simple local
operation, while node names are
required to reach destinations across
cluster-to-cluster connections. Du-
plicate destination names in different
clusters don’t conflict, and may be
reached individually by specifying the
appropriate node name.

Internet Connection Management
To maximize server use, DRA sup-

ports load balancing for incoming
client as well as server connections.
Load balancing spreads incoming con-
nections across the servers in a cluster
after an initial connection is made. For
resiliency in the case of a server failure,
load-balanced connections may have
multiple initial points of connection
and support a failover reconnect to
other servers should a connection be
lost.

Connections in DRA are made on
demand for messaging between servers,
and can be made from either side of a
routing connection when needed to
deliver messages. An inactivity timeout
can be specified for a connection to
either maintain or avoid a long-duration
connection when no messages are being
sent.

When a connection can’t be made to
a destination, messages are stored in the
sending server until forwarded for deliv-
ery. The store-and-forward capability
allows guaranteed messaging to contin-
ue despite short- or long-term interrup-
tions in connectivity. Messages saved for
forwarding may be persisted to disk
when large volumes must be retained.
When a cluster is able to establish a con-
nection to a destination, all messages
will be delivered to the newly accessible
location, regardless of which server con-
nected to the destination last, which
side initiated the connection, or where
messages were stored.

FIGURE 3 JMS Server cluster

Internet

E-MarketPlace

JMS
Server Cluster

JMS
Server

JMS
Server

JMS
Server

Application
Services

Pricing

Catalog

Shipping

Buyers

MarketplaceM

Suppliers

Partners
Incoming and

Outgoing
Message Traffic

FIGURE 4 Multiple connections handled by a DRA cluster

I
e

net

E-MarketPlace

JMS
Server Cluster

JMS
Server

JMS
Server

JMS
Server

Application
Services

Pricing

Catalog

Shipping

Buyer

JMSJMS
SServer

Purchasing

Availability

Forecasting

JMS
Server

Catalog

Quotes

Supplier

Java COM

42 MAY 2001

J 2 E E

End-to-End Security
Server and cluster-level security

allows full access control between
groups of users and destinations in the
DRA architecture. A company may pro-
vide a trading partner with access to any
selected part of its messaging system
and be assured that other aspects of the
system are fully protected. DRA ensures
the isolation of security domains from
each other by preventing information
about DRA clusters from reaching
unwanted destinations.

Mutual authentication of clients and
other DRA clusters is handled by a choice
of authentication technologies to guar-
antee the identity of incoming connec-
tions; full privacy is supported through
the use of SSL and payload encryption
features. DRA provides a system-wide
PKI digital certificate capability that fully
secures trading partner relationships.
Through secure DRA, JMS servers may
be employed both inside and outside
firewalls with HTTP tunneling capability
and forward and reverse proxy support.

Administration
A cluster of servers may be man-

aged as a single entity, allowing user

information, routing connections, and
security settings to be administered
with a single operation. Multiple clus-
ters may be managed using a single-
configuration database, and from a
single administrative console screen.
Notifications of system events are
available to assist in the management
of distributed operation. All adminis-
trative functions, including notifica-
tions, are also available from a pro-
grammatic interface.

Servers maintain full configuration
information locally, eliminating the
need for server interaction when han-
dling messages. Local configuration
allows each server to function even if
centralized configuration information is
temporarily unreachable.

Exception Handling Beyond the JMS Spec:
Dead Message Queue

For each server, a dead message
queue (DMQ) is used as the ultimate
destination for any message not deliv-
ered in the DRA system. A message that
can’t be routed due to changing configu-
ration will end up in this queue.
Messages that exceed their time to live
can also be placed in the DMQ.

Destinations that aren’t reachable
within predetermined time limits
may have pending messages added
to the DMQ. The DMQ is accessible
to applications as a normal queue
and provides notifications as mes-
sages are added to it. A message in
the DMQ will remain intact, includ-
ing its intended destination and a
code explaining why it arrived in the
DMQ. A custom application can be
written to read messages from the
DMQ and decide what to do based
on business rules.

Conclusion
JMS, combined with the proper

deployment architecture, such as
dynamic routing architecture, solves
today’s e-business messaging needs
of connecting enterprises in a
secure, reliable, and highly scalable
fashion.

DRA provides the simplicity and
flexibility needed to deploy e-busi-
ness applications within an infra-
structure that can grow and scale.
Application functionality may be
added as and where needed, with
the appropriate level of messaging
performance to support it. Dynamic
routing ensures that applications
are insulated from infrastructure
changes, and that new messaging
connections may be added at any
time.

Resources
1. SonicMQ: www.SonicMQ.com
2. MiddlewareSpectra’s article on

Commerce One’s middleware selection
criteria: www.sonicmq.com/
whitepapers/mws.pdf

FIGURE 6 Replicated application services

E-MarketPlace

JMS
Server Cluster

JMS
Server

JMS
Server

JMS
Server

Application
Services

Pricing

Pricing

Pricing

Catalog

Incoming and
Outgoing

Message Traffic

FIGURE 5 Messages routed using active route optimization

I
t

n
t

E-MarketPlace

JMS
Server Cluster

JMS
Server

JMS
Server

JMS
Server

Application
Services

Pricing

Catalog

Shipping

Buyer

JMSJMS
SServer

Purchasing

Availability

Forecasting

JMS
Server

Catalog

Quotes

Supplier

J

Next Month in JDJ…
JavaEdge 2001
Keynotes Announced

An Exclusive
Interview
with BEA’s
Scott Dietzen
by Ajit Sagar

The Great Mobile
Land Grab
What is Java 2 Micro
Edition, and why is every-
one so keen on it?
by Jason Briggs

A UI Framework for the
MIDP Low-Level API
by Glen Cordrey

An Open E-Business
Foundation
You don’t have to
re-create the wheel
by Scott L. Hebner

J2EE Application
Security Model
by Sanjay Mahapatra

Growing JSP and Servlet
Sites into EJB-Based
Services
by Patrick Sean Neville

Case Study: Separating
Presentation and Logic
Using JSP Custom
Tag Libraries
by Clement Wong and Karl Moss

Product Review: Sun Blade:
Is It that Sharp?
by Alan Williamson

chappell@progress.com

bcullen@progress.com

versal wrapper or entity beans universal wrapper or entity beans universal wrap
entity beans universal wrapper for entity beans universal wrapper for entity bean
ersal wrapper for entity beans universal wrapper for entity beans universal wrapp
entity beans universal wrapper for entity beans universal wrapper for entity bean
ersal wrapper for entity beans universal wrapper for entity beans universal wrapp
entity beans universal wrapper for entity beans universal wrapper for entity bean
ersal wrapper for entity beans universal wrapper for entity beans universal wrapp
entity beans universal wrapper for entity beans universal wrapper for entity bean
ersal wrapper for entity beans universal wrapper for entity beans universal wrapp
entity beans universal wrapper for entity beans universal wrapper for entity bean
ersal wrapper for entity beans universal wrapper for entity beans universal wrapp
entity beans universal wrapper for entity beans universal wrapper for entity bean
ersal wrapper for entity beans universal wrapper for entity beans universal wrapp
entity beans universal wrapper for entity beans universal wrapper for entity bean
ersal wrapper for entity beans universal wrapper for entity beans universal wrapp
entity beans universal wrapper for entity beans universal wrapper for entity bean
ersal wrapper for entity beans universal wrapper for entity beans universal wrapp
entity beans universal wrapper for entity beans universal wrapper for entity bean
ersal wrapper for entity beans universal wrapper for entity beans universal wrapp

a design approach for multitier applications written by andrei povodyrev and alan askew

Java COM

44 MAY 2001

This article presents a design approach for multitier applications
implemented with Enterprise JavaBeans. These entity EJBs inher-
it bulk set-and-get methods from a single parent class that takes

advantage of the java.lang.reflect package. This approach reduces the
number of network round-trips, simplifies application maintenance,
and significantly reduces the lines of code in an EJB application.

Introduction
Any funky new Web site, no matter how appealing its dynamic intro-

duction or its promise of a more efficient, exciting, and communal
lifestyle, must culminate eventually in “the form.” Internet users surf
new sites with a subconscious dread of “the form,” that page where, in
spite of 21st-century technology, you must still type in last name, first
name, middle initial, address, and so on to receive mailings.

Distributed Web application developers share this dread, hoping to
avoid the coding ennui that accompanies such pages. Furthermore,
developers must contend with the performance and maintenance of the
distributed code that handles these pages. While we can’t yet help users
save the time invested in last name, first name, and middle initial, we’d
like to offer relief to application developers trying to efficiently and ele-
gantly move bulk data from EJB clients to their database.

Setup
Let’s consider a Web-based EJB architecture in which the user’s

browser submits HTTP requests to a servlet, which processes these
requests via calls to EJBs, which in turn communicates with persistent
storage (see Figure 1).

Suppose your application users arrive at a page on which they’ll sub-
scribe to a magazine. After they submit the 15 fields your application
requires, your servlet will service a request laden with 15 parameters or
attributes ready for processing. There are several common ways to write
this new data to the database. Each presents its own performance or
maintenance problems, all of which our technique eliminates.

Typical Approaches
In the most direct approach your client code can find the appropri-

ate remote interface of your fine-grained entity bean and call a set
method for each of the required data fields. Explicit transaction man-
agement (Java Transaction API) preserves the transactional integrity of
this operation, but each set call on the stub still requires a round-trip
network interaction with the skeleton resulting in some latency, a delay
between command execution and completion. The more method invo-
cations used to perform a logical piece of work, the greater the latency in
the application (see Listing 1, Style 1).

To take advantage of an application server’s transaction management,
you might hide all the set methods required for this operation behind a
single EJB method with an extended parameter list. This approach re-
duces your network communication to a single round-trip. As form fields
on the page change, however, the maintenance of these methods renders
this approach frustrating and cumbersome (see Listing 1, Style 2).

Note: This article assumes a thorough understanding of Java and the Enterprise Java-
Beans component model and is intended for enterprise application developers.

Java COM

46 MAY 2001

Custom data classes, whose data members mimic those of an entity
bean, prove more elegant than the other approaches on the client side,
but rather awkward and repetitive on the EJB side. First, every bean
requires an individually tailored class that developers must update and
recompile whenever the bean changes. Second, the bean developer
must still retrieve each field from the wrapper object and call the corre-
sponding set method on the bean. Thus the client developer calls 15 set
methods on the wrapper, then the bean developer calls 15 get methods
on the wrapper and 15 set methods on the bean. The code requires 45
get-and-set calls for a bulk update of only 15 fields (see Listing 1, Style 3).

Universal Wrapper Objects: Hashtables
To alleviate the maintenance problems custom classes create, we

now consider using hashtables to pass update information to beans. You
need not develop a separate wrapper class for each bean, and you can
easily identify those data elements the client wished to update, leaving
other attributes untouched. However, you must still duplicate attribute
calls. The client user would have to use a put call for every attribute, then
the bean developer would turn each of those into a pair of get (on the
hashtable) and set (on the bean) calls. Considering the dull and system-
atic task of converting hashtable values with keys such as “lastName”
into method calls such as setLastName(), you might begin to anticipate
our solution.

EntityBeanServices:The Basics
Any Java class can be dynamically inspected using Reflection, which

allows the programmer to obtain information about the fields, construc-
tors, and methods of any class at runtime. Java implements Reflection via
the java.lang.reflect package. Any object method can be called dynamical-
ly using invoke() on the java.lang.reflect.Method class. We’ve developed an
elegant and powerful pair of methods that take advantage of Reflection and
automatically translate a hashtable key into a bean method invocation.

Client code assembles a hashtable with all the bean attri-
butes to update, using as hashkeys the actual method names on the enti-
ty bean (e.g., “setLastName”). Then
they call a single method, set-
BeanAttributes(), on the entity
bean, passing this hashtable of
bean attributes as an argument (see
Listing 1, Our Approach). In the
setBeanAttributes() method, the
code examines each of the keys
provided in the hashtable, invoking
the corresponding method with the
key’s paired object as the single
argument.

The companion method,
getBeanAttributes(), works in a
similar way, looping through the
bean’s methods, finding all those whose names begin with the conven-
tional “get” substring and putting the return object in the hashtable with
a key named for the invoked get method.

Implementation Details
As shown in Figure 2, application architects can easily include these

methods in their application design. We write the setBeanAttributes()
method implementation in a parent class called EntityBeanServices
(EBS) (see Listing 2). Each entity bean extends this class as well as imple-

ments javax.ejb.EntityBean, which the EJB specification requires. The
remote interfaces can also extend an EntityBeanServicesInt interface
(see Listing 3). All entity beans will then have setBeanAttributes() and
getBeanAttributes() defined in the remote interface and implemented in
the bean class, just as the EJB specification requires. Each entity bean
now has access to setBeanAttributes() and getBeanAttributes() without
any further coding on the beans (other than the two class extensions).
Should you need to update attributes on more than one bean in a single
transaction, you can write a session bean method that takes as argu-
ments one hashtable per entity bean. The body of that method then
looks up each bean and calls setBeanAttributes() on it, preserving all the
set methods inside a single, container-managed transaction.

When you pass a hashtable to setBeanAttributes(), the key value pair
consists of the set method’s name and an object intended as the argu-
ment to that set method. Even if you use primitive bean attributes,
setBeanAttributes() can handle the required manipulation from, for
example, an Integer object to an int primitive (in fact, the

java.lang.reflect package provides this service).
The methods of the EntityBeanServices class

inherited by a particular enterprise bean uses the
default isolation level and transactional attribute
declared in the bean’s deployment descriptor. For
example, if the default transaction attribute is set to
TX_REQUIRED, a call to setBeanAttributes() invokes

all set methods together in a single transaction. Thus, if a single set
method invocation fails in this bulk operation, the entire transaction will
be rolled back. Given the flexible nature of the transactional attributes
model for EJB, developers can implement specific transactional strate-
gies for both the bean’s own methods as well as those of the parent class.

Extensions of EBS
Most bean developers have faced the following problem posed by the

ejbCreate() method. ejbCreate() asks the developer to define (via the

FIGURE 2 Universal wrapper class diagram

FIGURE 1 Simple workflow for a multitier, EJB-enabled application

HTML forHTML form
Servlet

Database

EJB

universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity bea

for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrap

universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity bea

for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrap

universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity bea

for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrap

Java COM

48 MAY 2001

method signature) which data fields the client code must provide to create
an entity. As those requirements change, old ejbCreate() definitions must
be changed or preserved as obsolete versions. With EntityBeanServices in
place, we can call ejbCreate() passing only a hashtable and make a
setBeanAttributes() call within that method. In this way we require only a
single ejbCreate() method that we never have to change. Of course the
developer must be sure to include key/value pairs for all not null attributes.

Another modification to EntityBeanServices will improve the per-
formance of your calls to getBeanAttributes(). Rather than invoke each
and every get method on the bean, even when you need only a subset of
the attributes returned, you could overload getBeanAttributes(). Provide
a second signature that takes as an argument a hashtable with keys
specified for those get methods you hope to execute. Should you require
only five attributes from the bean, this overloaded form will allow you to
execute precisely five methods and no more.

We have considered numerous other features that beans might
inherit from this parent class that we hope to share in future articles. We
look forward to any extensions of EBS you work out as you incorporate
this pattern into your applications.

Drawbacks
While we’ve found EntityBeanServices an excellent tool for our dis-

tributed EJB applications, we should note the price to pay for this con-
venience, even though we find it relatively small. The greatest inconven-
ience of EntityBeanServices is the absence of compile-time checking.

Since attributes are put into a hashtable with method names as
hashkeys, a simple misspelling can cause runtime grief. We’ve tried to
minimize this concern by providing detailed output when throwing
exceptions from EntityBeanServices. We offer several likely causes for
the runtime error and use the Reflection class to be sure the developer
knows which bean the client was trying to update when the error
occurred. To improve error handling, we encourage developers to pro-
vide the class with a set of custom exceptions.

We also experienced some problems initially when trying to get or set
null object references as bean data members. Java 1.1.7 developers can
avoid this by creating their own NullObject, which represents a null refer-
ence. Java 2 resolves this problem easily with the java.util.HashMap class,
accepting key value pairs in which the value is a null object reference. You
may also find Java 2 options such as java.util.Vector and java.util.LinkedList
more efficient for setBeanAttributes(). Any of these will work as the argu-
ment type and eliminate inefficiencies caused by the initial memory alloca-
tion and code synchronization of java.util.Hashtable.

Note that changes to EntityBeanServices method signatures require
the architect to rebuild all the descendent beans. Since we still experi-
ment with new concepts in EBS, we wrote a simple shell script to rebuild
our beans and run it after hours. If you use only the two methods we
provide or carefully plan your implementation of EntityBeansServices
ahead of time, you shouldn’t encounter this problem.

Finally, those of you developing beans for commercial use will have
to package EBS along with your beans. This may create minor incon-
veniences for you.

Conclusion
Our need for transaction-aware bulk updates led us to this bean

superclass, which has served us faithfully. We’ve eliminated some of our
developers’ tedious coding responsibilities and eased the maintenance
required when we augment or prune our entity beans. Although we
always hope they won’t, data structures may shift and change even deep
into the development process, and EntityBeanServices help minimize
the impact of these changes. We’ve controlled the risks associated with
runtime errors by providing clear direction to the test developer as to the
likely nature of the problem and have found numerous relevant exten-
sions for this class. We encourage you to take this concept, work with it,
and share your results and experiences with us.

Acknowlegements
We would like to thank FCG Doghouse for their support; Shaheem

Sait for inspiring us to write this article; and Art Solano, Jennifer Terry,
and Jonathan Leibundguth for useful comments.

AUTHOR BIOS
Andrei Povodyrev is a senior software development specialist with FCG-Doghouse, Inc., experienced in the
analysis, design, development, and maintenance of business information systems. He has specific expertise in Java,
EJB, JSP, PowerBuilder, C++, Sybase, and Oracle systems and is a certified programmer for the Java 1.1 Platform.

Alan Askew is a senior software development specialist with FCG-Doghouse, Inc., and has worked in both
management and technical consulting in a variety of industries. He has particular expertise in Java, EJB, JSP,
PowerBuilder, and Oracle. He’s a certified programmer for the Java 1.1 Platform and has worked through
half of his Oracle DBA Certification.

apovodyrev@doghouse.com

aaskew@doghouse.com

universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity bea

for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrap

universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity bea

for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrap

universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity bea

for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrap

Java COM

50 MAY 2001

public class EJBClient{
public static void main(String [] args){
try{
Member ourMember;
//Put code here to get the remote interface for a particular

Member object

//To change Member data before, you might have used one of the
three styles:

//Style 1. Calling set methods directly...Requires three network
round trips

//javax.transaction UserTransaction ut = //get the
UserTransaction

//ut.begin
//ourMember.setFirstName("Jane");
//ourMember.setLastName("Doe");
//ourMember.setMagazineName("Computer Weekly");
//ut.commit();

//Style 2. A long-parameter list set method is inflexible as
the number of arguments is //fixed

// ourMember.setSubscriptionInformation("Jane", "Doe",
"Computer Weekly");

//Style 3. A set method with a custom wrapper class
(MemberWrapper)is cumbersome to maintain: changes in
entity bean will require corresponding changes on wrapper
class; each entity bean requires its own wrapper

//MemberWrapper mWrapper = new MemberWrapper();
//mWrapper.setFirstName("Jane");
//mWrapper.setLastName("Doe");
//mWrapper.setMagazineName("Computer Weekly");

//ourMember.setSubscriptionInformation(mWrapper);

// OUR APPROACH
//Using EntityBeanServices, you prepare a hashtable
java.util.Hashtable ht2 = new java.util.Hashtable();
ht2.put("setFirstName","Jane");
ht2.put("setLastName","Doe");
ht2.put("setMagazineName","Computer Weekly");
//Then make a single call, uniting the set methods in a single
transaction. //Universal form for every entity bean in your
application

ourMember.setBeanAttributes(ht2);

} //end try
catch(Exception e){
e.printStackTrace();

} //end catch
} //end main method
} //end class

public class EntityBeanServices {

public void setBeanAttributes(Hashtable ht) throws
java.rmi.RemoteException{

//invoke set methods based on keys in ht
String key, name, methodName = null;
boolean methodNotFound = true;
Object arglist[] = new Object[1];
Enumeration keys = ht.keys();

try{
name = getClass().getName();

Method m[] = getClass().getDeclaredMethods();

while(keys.hasMoreElements()){
key = (String)keys.nextElement();
methodNotFound = true;
for(int i = 0; i < m.length; i++){
methodName = m[i].getName();

// loop through bean's methods to find a match
// some filtering based on common sense is desirable
//match name of the method

if(key.equalsIgnoreCase(methodName))

//get methods must be public
if(m[i].getModifiers() == Modifier.PUBLIC)

//set methods have a single argument
if((m[i].getParameterTypes()).length == 1)

//set methods must not start with "get"

if(!methodName.startsWith("get"))
if(!methodName.startsWith("ejb")) {

methodNotFound = false;
arglist[0] = ht.get(key);

//invoke matched method
m[i].invoke(this, arglist);

}// end if
}//end for
if(methodNotFound) throw new Exception("Attempt to
invoke a set method " +

key + " on " + name + " failed. \n" +
" Possible reasons: \n" +
" 1) it is not a set method;\n " +
" 2) method has more than 1 argument;\n" +
" 3) method name does not start with 'set'\n" +
" 4) no such method in the class");

}//end while

}catch(Throwable e){
e.printStackTrace();
throw new java.rmi.RemoteException("Exception is rethrown");}

}

public Hashtable getBeanAttributes(){
// identify and invoke all get methods for this entity bean
Hashtable ht = new Hashtable();
Object arglist[] = new Object[0];

try{
//get all methods of the EJB
Method m[] = getClass().getDeclaredMethods();

// filter get methods and invoke them

for(int i = 0; i < m.length; i++){
if((m[i].getParameterTypes()).length != 0) continue;

//get methods do not have parameters
if(m[i].getModifiers() != Modifier.PUBLIC) continue;

//get methods must be public continue;
if(!m[i].getName().startsWith("get"))

//get methods must start with "get"
if(m[i].getName().equals("getBeanAttributes")) continue;

//should not be itself

Object ob = m[i].invoke(this, arglist);
if (ob != null)

ht.put(m[i].getName(), ob);

}
}catch(Throwable e){
e.printStackTrace();

}
return ht;

}

}

/**
* EntityBeanServicesInt is designed as a parent interface for

EJB remote interfaces.
* Interface declares methods that are implemented in

EntitybeanServices class
**/
public interface EntityBeanServicesInt {
public void setBeanAttributes(java.util.Hashtable ht) throws
java.rmi.RemoteException;

public java.util.Hashtable getBeanAttributes() throws
java.rmi.RemoteException;

}

Listing 3

Listing 2

Listing 1

universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity bea

for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrap

universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity bea

for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrap

universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity bea

for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrapper for entity beans universal wrap

While this article and the examples
contained within are specific to
WebLogic 6.0, all of the deployment
code and standard descriptors should
be portable to any J2EE-compliant serv-
er. We won’t cover encryption and SSL
this month, as they’re articles in their
own right.

Trader Application
How many securities trading exam-

ples have you seen to date? Too many, I
bet you’d say. Well, we decided airline
reservation systems and “hello, world”
programs are way too overused. Even
though the stock market is not a hot
topic these days, in an effort to spend
more time explaining J2EE security and
less time talking about business require-
ments, we opted for the trading program
as well.

The application we’ll be building
represents a stock trading system in
which users may buy, sell, and view
securities. We’ll grant all paying cus-
tomers the ability to purchase and view
securities. However, we’ll reserve the
ability to sell securities to just traders,
who may also view and purchase securi-
ties. Basically, traders are the power
users of our system! Furthermore, we’ll
provide a customized login page that
can be tailored to the look and feel of
our site rather than relying on a basic
browser authentication window.

To build our application we’ve cho-
sen the WebLogic Server 6.0. With
WebLogic 6.0, we’ll take advantage of

features such as a security domain
based on a relational database, Web
application security, and method-level
EJB security.

Implementing J2EE Security with
the WebLogic 6.0 Server

There are several things we’ll need to
accomplish to get our end-to-end appli-
cation up and running with the security
constraints we require. Listed below are
the basic steps for creating and imple-
menting this functional example:
1. Configure a security domain
2. Secure the Web tier
3. Secure the EJB tier
4. Demonstrate end-to-end security in a

J2EE application

Configure a Security Domain
Before we can secure anything, we

must have a security domain that con-
tains our users and groups. WebLogic
Server provides several methods to con-
struct and use security domains (or
realms). The default WebLogic domain
is file-based, storing users, groups, and
ACLs (access control lists) for the server
in separate properties files. The file-
based domain is easy to read and config-
ure in the server, but it’s not a scalable
solution for an organization with any
real user-base. The File Realm solution
is designed for systems with 1,000 or
fewer users. Furthermore, if the file itself
becomes corrupt, you’ll need to recon-
figure security again. This is unaccept-
able in an enterprise-level application,

which must have a robust, scalable
security domain.

WebLogic provides plug-in capabili-
ties for more scalable solutions includ-
ing LDAP, UNIX, and NT security. In this
example, we’ll use the RDBMSRealm
that comes with the standard WebLogic
install. This plug-in domain uses a rela-
tional database to store security infor-
mation. The RDBMSRealm is easy to
use, offers configurable caching of secu-
rity information, and refreshes its data
without downtime – features we’re par-
ticularly interested in exploiting for our
production J2EE application. So, how
easy is it? Let’s see.

Our first step in configuring a securi-
ty domain is to create the relational
tables necessary to store our informa-
tion. The RDBMSRealm consists of three
database tables: USERS, GROUPMEM-
BERS, and ACLENTRIES. WebLogic pro-
vides the DDL (data definition lan-
guage) necessary to create the tables in a
file called rdbmsrealm.ddl. Use the
WebLogic utility, utils.Schema, to run
the DDL or create the tables by hand.
This file will also insert some sample
data entries in each of the three tables to
ensure that we understand the format of
the data that’s expected by the domain’s
tables. Note: You may need to modify the
scripts to work with your particular
database or the default data that’s being
inserted – but changing table or column
names will force you to make some
modifications to the schema properties
(described later). We advise just using

Implementing J2EE Security
with WebLogic Server

WRITTEN BY
JASON WESTRA &

CHRIS SIEMBACK

In the March issue of JDJ (Vol. 6, issue 3) we discussed the basics
behind J2EE security, including coverage of role-based security for
both the Web and EJB tiers. In Part 2, we provide an example of
implementing J2EE security in the WebLogic Server.

Part 2 of 2

The benefits and ease of use

E J B H O M E

Java COM

52 MAY 2001

E J B H O M E

the schema provided for your initial look
into the security example.

For our example we’re creating two
groups, onlineinvestor and trader. Once
the database tables have been created,
we can create and register the domain
for use within WebLogic.

After creating our domain tables, we

need to ensure our security
domain classes are built and
available to the WebLogic
Server. Again, we’re using the
example security classes pro-
vided by WebLogic. You’ll find
the security classes in the fol-
lowing directory:

/WEBLOGIC_HOME/samples/exam-

ples/security/rdbmsrealm

They’ll need to be compiled
and put in the server classpath

for the domain to function properly.

Enable the Domain for WebLogic
The RDBMSRealm relies on proper-

ties contained within the config.xml file
used for your domain for the database
connection information and on the SQL
statements that will be used with such
actions as adding or deleting users and
groups. To create the RDBMSRealm, you
should launch the WebLogic Server
Console. The WebLogic Server Console
is a Web-based administrative utility
that allows developers to remotely man-
age nearly all the facets of the WebLogic
Server. It’s a welcome upgrade from pre-
vious versions of this tool. To enable the
domain, we simply select the “Realms”
node located under “Security” (see

Figure 1). You’ll need to follow the
“Create a new RDBMSRealm” link and
enter the appropriate information. For
this example, we’ve chosen to name our
domain “JDJDomain” and we’ve also
provided the fully qualified class name
of the RDBMSRealm (examples.securi-
ty.rdbmsrealm.RDBMSRealm).

Now that we have the domain
defined, we must provide WebLogic with
the database connection information
that’s required to access the database. To
do this, click on the “Database” tab and
enter the appropriate information for
the connection. An example of this is
shown in Figure 2.

After you’ve entered the appropriate
data, click on the “Apply” button. Now
that we’ve constructed our domain and
supplied WebLogic with the necessary
connection information, we must pro-
vide some additional properties that our
Domain classes will use to manipulate
the data. The schema properties are the
values for the PreparedStatements that
the RDBMSDelegate uses to make mod-
ifications to the data store. After select-
ing the “Schema” tab and entering the
appropriate properties, we can apply
them.

Now that we’ve completed the
domain, we need to select the “Caching
Realms” and create a new Caching

FIGURE 1 WebLogic console

FIGURE 2 Database configuration

Java COM

54 MAY 2001

Java COM

Realm, selecting the “JDJDomain” that
we just created from the drop-down list
box. We have the option of modifying
the caching properties, which will affect
the performance of our security
domain.

Last, we need to select the Caching
Realm we just created from the drop-
down list box under the “Security” node.
Once we restart the server, we should be
ready to rock and roll!

Securing the Web Tier
With the Servlet 2.2 specification,

J2EE application deployers and system
administrators have the ability to apply
declarative security to Web content. This
method of security is portable to any
J2EE-compliant server and allows devel-
opers to define custom login and error
pages. In fact, we can assign custom
error pages for specific Java exceptions
and HTTP codes (e.g., 404 page not
found error) so we can hide the error
behind a nice message such as, “We are
currently experiencing high volume. If
you are a venture capitalist looking to

fund us, please forward money to
account XYZ. Thank you.”

Create Web Deployment Descriptors
To apply security at the Web tier, we

edit the Web application’s standard,
web.xml, and WebLogic’s proprietary
WebLogic.xml deployment descriptors
to define the Web resources, security
restrictions, a custom login page, and
error page. Both the web.xml and
WebLogic.xml files are located within
the WEB-INF directory in the HTML
document root. Breathe easy, security-
mongers.... This directory is not accessi-
ble to browsers, even though it’s con-
tained within the HTML root.

The web.xml file (see Listing 1) is the
standard Web application deployment
descriptor. It defines a Web application’s
Web resources, essentially a collection
of pages, and their attached security
constraints. Also, we’ve defined a cus-
tom login page when users need to be
authenticated. When users first hit a
restricted page, the custom login page is
presented to them. If the user is authen-

ticated and granted access, the user is
automatically brought to the page he or
she was originally intended to get to. If
authentication fails or the user doesn’t
have access to the page, then he or she is
brought to the form-error page. With
this method, developers don’t have to
explicitly carry and insert the user’s cre-
dentials or security attributes, a J2EE
server such as WebLogic 6.0 handles this
functionality for you.

After defining the web.xml file, we
need a corresponding WebLogic Web
descriptor, called WebLogic.xml appro-
priately enough. This file is proprietary
and is used to link external references
such as security principals from the
standard web.xml descriptor to our
deployment environment in the
WebLogic Server. Listing 2 provides an
example of the WebLogic.xml file that
we’ll use. Notice how generic role
descriptions in the web.xml such as
“role-onlineinvestor” is mapped to
onlineinvestor, an actual principal in
our security domain. This mapping is
expressed visually in Figure 3.

Construct a Custom Login Page
Now that we have our Web security

defined in our descriptors, we need to
construct the login.jsp page we defined
in the web.xml file. This file allows us to
construct a login page that doesn’t rely
on the browser’s native authentication
method and enables us to design the
page to look like the rest of our site. The
requirements for this page are explained
in detail in the Servlet 2.2 specification,
but let’s briefly cover the basic ones
here.

Listing 3 is the most basic login JSP
we can create. In this page, we have a
form that will send user credentials to
the server. The form ACTION attribute
must be set to “j_security_check”. We
also require two text fields to contain the
username and password. They’re
required to have the attribute value of
NAME equal to “j_username” and
“j_password” respectively. These nam-
ing conventions allow the Web contain-
er that’s servicing an authentication
request to handle it generically.

The login.jsp works like this: when
users first attempt to access a restricted
Web resource, the request is sent to the
container, which stores the URL of the
request and sends back the login form.
The user then inputs his or her creden-
tials and submits the form back to the
container. If the user has valid permis-
sions, he or she is brought to the URL
that was originally requested. If the
login fails, the user is brought to the
login-error page.

FIGURE 3 Mapping security attributes

<security-role--assignment>
 <role-name>

role-onlineinvestor
 </rolename>
 <principal-name>

onlineinvestor
 </principal-name>
</security-role>

<security-role-assignment>
 <role-name>

role-trader
 </rolename>
 <principal-name>

trader
 </principal-name>
</security-role-assignment>

<security-role>
 <description>

the customer role
 </description>
 <role-name>

role-onlineinvestor
 </role-name>
</security-role>

<security-role>
 <description>

the customer role
 </description>
 <role-name>

role-trader
 </rolename>
</security-role>

web.xml weblogic.xmml

onlineinvestor

trader
RDBMSRealm

Standard
PrProprietaryPr

METHOD AUTHORIZED ROLE DESCRIPTION
getSecurities everyone This method returns a list of securities
buy onlineinvestor Returns a String upon successful

trader completion of purchasing a security
sell trader Returns a String upon the successful

completion of selling a security

TABLE 2 WebLogic security exception details

EXCEPTION DESCRIPTION
javax.naming.AuthenticationException AuthenticationException is thrown if the username and password

of the individual cannot be found in the security domain.
java.rmi.RemoteException A RemoteException is thrown if the user exists, but doesn’t

match the security requirements for the method he or she is
attempting to access. You can check the message in the excep-
tion to verify that a security issue was the cause.

TABLE 1 Security resource to role mappings

MAY 200156

57MAY 2001

Java COM

Securing the EJB Tier
Now that we have a working securi-

ty domain and have successfully
secured our Web tier, let’s add security
to our TraderEJB in the EJB tier. Even
though we have Web-tier security, since
EJBs are remote objects they may be
accessed from clients other than a Web
server. For this purpose, we want to
also apply restrictions on our EJB
methods.

To do so we can modify our
TraderEJB component to implement the
security restrictions specified by our
application requirements.

J2EE security is designed as a con-
tainer-based service and set at the
thread level, which enables the context
to be propagated to other components
on subsequent calls. This feature simpli-
fies the security of J2EE applications by
implicitly passing the security context of
the user to each component without
requiring the developer to code security
logic. Security constraints can be added,
removed, or updated without affecting
the components that utilize the contain-
er’s security services. Since J2EE security
is declarative, we need only update XML
descriptors to secure the TraderEJB.

Table 1 describes the security restric-
tions placed on the TraderEJB’s methods
in the XML descriptors. For demonstra-

tion purposes, these methods are hard-
coded; however, in a real application,
these methods would probably access a
real-time quote feed for securities, and
store shares bought and sold with JDBC
or entity beans.

The Web tier doesn’t have to authen-
ticate a user until a secured Web
resource is requested. At some point the
Web tier may contact an EJB even if a
user has never been established; howev-
er, the EJB tier must have a user. To solve
this dilemma, the J2EE specification
requires that a J2EE product supply a
principal in place of the empty user.
WebLogic defines the group everyone
and the users guest and system to sup-
port this functionality. Because they’re
inherent in WebLogic, they don’t need to
be defined in the RDBMSRealm.

The ejb-jar.xml file (see Listing 4) is
where we assign permissions to meth-
ods in the EJB. From within the method-
permission tag we define which roles
have access to which methods. For
example, we’ve added the role-onlinein-
vestor and role-trader (which map to the
onlineinvestor and trader groups,
respectively, in the domain) to the buy
method. You may add as many groups as
necessary to the method’s permission.
For the sell method, we’ve allowed only
the trader group. The last method,

getSecurities, provides permission to
the implicit everyone group. Remember
that J2EE security allows access to
restricted methods as long as the user is
in at least one of the groups defined.

The WebLogic-ejb-jar.xml file (see
Listing 5) maps the actual group/user
name contained within the domain to a
role name that’s used within the XML
files. Here we’re assigning a role-name,
which will be used in the ejb-jar.xml, to
the actual principal name contained
within the database domain. We’re cur-
rently mapping the trader group to the
role-name role-trader. The same is true
for the onlineinvestor and everyone.

How Did We Do?
We now believe we have a functional

application that meets the security
requirements stated. Let’s test our appli-
cation to be sure. Where do we begin?
Since we defined in the web.xml that
only the /trade/index.jsp page should
have security, we should be able to freely
access any other portions of our site
without being prompted for authentica-
tion. It’s pretty simple testing security
when there really isn’t any!

Now, let’s attempt to access resources
that are reserved for online investors and
traders. Since we’ve secured access to the
resources in the trade directory, we should

E J B H O M E

E J B H O M E

get sent to the custom login page we cre-
ated when we access these pages. Enter
the credentials for an onlineinvestor, and
we should get forwarded back to the page
we were attempting to access in the first
place. Now, we should be able to list and
purchase securities. So far, so good.

Last, let’s attempt to access these
resources as a trader. To be safe, let’s close
our browser and then access the restrict-
ed pages again, logging in as a trader this
time. We should now be able to perform
all three of the EJB methods that we’ve
secured, including selling securities.
Note: If we had originally logged in as a
trader, we would not have been prompt-
ed again unless we tried to access
resources traders don’t have access to.

Understanding WebLogic’s Security Exceptions
As stated in Part 1, there are two

steps involved when the user attempts
to access a controlled resource,
authentication, and authorization.
First, WebLogic authenticates the user
by determining whether the specific
user even exists in the domain. If the
user isn’t present, an Authentication-
Exception is thrown. If the user exists,
WebLogic checks the permissions to
determine if the user has authorization
to access a service. If the user is
authorized, the service is accessible
and methods may be executed. Table 2
lists the possible exceptions that can
be thrown when checking security
access.

Conclusion
This month we took the basic J2EE

security knowledge we learned in our
last column and applied it toward a
working example on the WebLogic
Server’s implementation. Specifically,
our example was based on WebLogic’s
RDBMSRealm, a security domain that
utilizes a relational database to store its
information. We hope this month’s EJB
Home improved your comfort level with
J2EE security and enlightened you on
its benefits and ease of use when apply-
ing it through the WebLogic Server.

AUTHOR BIOS
Jason Westra is CTO at

Verge Technologies Group,
Inc., a Java consulting firm
specializing in e-business
solutions with Enterprise

JavaBeans.

Chris Siemback, an
Enterprise Java consultant

at Verge Technologies
Group, Inc., specializes in

Web-based EJB
applications, various

development
methodologies, and

distributed architectures.

westra@sys-con.com

csiemback@vergecorp.com

<security-constraint>
<web-resource-collection>

<web-resource-name>TradeApp</web-resource-name>
<url-pattern>/trade/*</url-pattern>

<http-method>POST</http-method>
<http-method>GET</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>role-onlineinvestor</role-name>

</auth-constraint>
</security-constraint>

<login-config>
<auth-method>FORM</auth-method>
<domain-name>JDJDomain</domain-name>

<form-login-config>
<form-login-page>/jsp/login.jsp</
form-login-page>

<form-error-page>/jsp/loginerror.jsp</
form-error-page>

</form-login-config>
</login-config>

<security-role>
<description>the customer role</description>
<role-name>role-onlineinvestor</role-name>

</security-role>

<security-role>
<description>the customer role</description>
<role-name>role-trader</role-name>

</security-role>

<security-role-assignment>
<role-name>role-onlineinvestor</role-name>
<principal-name>onlineinvestor</principal-name>

</security-role-assignment>

<security-role-assignment>
<role-name>role-trader</role-name>
<principal-name>trader</principal-name>

</security-role-assignment>

<HTML>
<BODY>
The page you’re attempting to access is restricted, please login:

<FORM METHOD="post" ACTION="j_security_check">
Username: <INPUT TYPE ="text" NAME="j_username">

Password: <INPUT TYPE ="password" NAME="j_password">

<P><INPUT TYPE="Submit" NAME="Submit" VALUE="Submit">
</FORM>
</BODY>
</HTML>

<security-role-assignment>
<role-name>role-onlineinvestor</role-name>
<principal-name>onlineinvestor</principal-name>

</security-role-assignment>

<security-role-assignment>
<role-name>role-trader</role-name>
<principal-name>trader</principal-name>

</security-role-assignment>

<security-role-assignment>
<role-name>role-everyone</role-name>
<principal-name>everyone</principal-name>

</security-role-assignment>

<assembly-descriptor>
<security-role>

<description>Investor in the application</description>
<role-name>role-onlineinvestor</role-name>

</security-role>
<security-role>

<description>A stock broker, or trader</description>
<role-name>role-trader</role-name>

</security-role>
<security-role>

<description>Anyone in the RDBMSDomain</description>
<role-name>role-everyone</role-name>

</security-role>
<method-permission>

<description>
This permission gives the right to purchase shares.
</description>
<role-name>role-onlineinvestor</role-name>
<role-name>role-trader</role-name>
<method>

<ejb-name>jdj.security.SecureTradeMgr</ejb-name>
<method-name>buy</method-name>

</method>
</method-permission>
<method-permission>

<description>
This permission gives the right to sell shares.
</description>
<role-name>role-trader</role-name>
<method>

<ejb-name>jdj.security.SecureTradeMgr</ejb-name>
<method-name>sell</method-name>

</method>
</method-permission>
<method-permission>

<description>
This permission gives the right to view the list of
securities.
</description>
<role-name>role-everyone</role-name>
<method>

<ejb-name>jdj.security.SecureTradeMgr</ejb-name>
<method-name>getSecurities</method-name>

</method>
</method-permission>

</assembly-descriptor>

Listing 5: ejb-jar.xml

Listing 4: WebLogic-ejb-jar.xml

Listing 3: logic.jsp

Listing 2: WebLogic.xml

Listing 1: web.xml

Java COM

58 MAY 2001

C r e a t e a r i c h u s e r i n t e r f a c e l i b r a r y

W r i t t e n b y N e a l F o r d

Remember the old axiom, Be careful what you ask for, you just might get it?
That’s what happened with the Abstract Windowing Toolkit (AWT), GUI controls, and threading. Developers were

tired of always worrying about multithreaded access to GUI elements, so it sounded like a good idea to create an

application framework that was always thread-safe.

B u i l d i n g w i t hThread-SafeGUIs
S w i nS i nw gg

Java COM

60 MAY 2001

What do we mean by thread-safe? Two separate threads of

execution can access the control at the same time without

the developer having to worry about the threads interfering

with one another. AWT made this possible...and was conse-

quently very sluggish. The original designers of Java built a lot

of thread safety into the language and its libraries. For exam-

ple, the collections classes from the original JDK (Vector and

Hashtable) are always thread-safe. However, that safety

comes at a cost. Because there’s a great deal of overhead

necessary to build thread-safe artifacts, they tend to be much

slower than nonthread-safe alternatives. This is true of the

collections classes (which is why we now have ArrayList and

Hashmap, the nonthread-safe alternatives) and Swing.

When it came time to build JFC and Swing, one of the
design decisions was that thread safety would be eschewed in
favor of speed. This doesn’t mean the controls can never be
accessed from multiple threads, but the developer is now
responsible for adding code to ensure that no ill effects occur.
This article shows how to build thread-safe GUIs in Swing.
First, however, I’ll show what happens if you don’t take care of
threading.

Thread Collisions
Consider the application shown in Figure 1. It’s a simple

list box whose items are updated via a thread. For the first
version of this example, no thread safety is built into the code
(see Listing 1).

As you can see, the thread updates the contents of the list
box continuously. What’s bad about this? When it runs, you
get the result shown in Figure 1. As the thread updates the list
box, the drawing thread in Swing also accesses the elements
to keep the GUI representation updated. Because both
threads can access the content at the same time, the worker
thread can pull items off the content at the same time the
drawing thread is accessing them for display. This causes the
cascading series of exceptions you see in the figure.

How can this be prevented? By using one of the static
methods in the EventQueue class – invokeLater() or

Java COM

invokeAndWait(). These methods were originally in the
SwingUtilities class (in JDK 1.1.x) and are now accessible
from either class. These methods can take a thread as their
parameter and are responsible for executing the thread
that’s passed to them in sync with the main Swing thread.
These two methods determine how you want the update to
occur. The invokeLater() method returns immediately, plac-
ing the update code in the regular event queue of Swing.
This means the updating will take place as soon as possible,
but it doesn’t make your code wait for the update to occur.
There may be situations in which you want your code to
wait until the update has occurred. The invokeAndWait()
method won’t return until the update is complete. These
methods are the secret to handling graceful threaded Swing
code.

Listing 2 demonstrates how to solve the original prob-
lem. I’ve added code to call invokeLater() to the code that
must update the Swing control’s contents. Now when the
application runs, no exceptions occur because both the
update and drawing threads are no longer in conflict. The
pertinent change to the code appears in the body of the
run() method of the WorkerThread class and is shown here:

EventQueue.invokeLater(new Runnable() {

public void run() {

if (model.contains(i))

model.removeElement(i);

else

model.addElement(i);

}

});

This is a common technique for updating Swing controls
from within a thread. A new anonymous class that imple-
ments the Runnable interface is created. The code in the
run() method is the code placed in the main event thread in
Swing. Notice that this is the same code used in the previous
example to update the list box’s model – the difference here
is the call to EventQueue.invokeLater().

Progress for Long-Running Processes
Here’s a practical example of the need to have a thread

update in real time. A common chore in applications is to
show the users the progress of some long-running process.
There are two ways to create such a process. If coded direct-
ly into the application (i.e., not in a thread), the application
can’t show progress because the process hasn’t finished yet.
In other words, if you do the work in an event handler, you’re
occupying the main event thread. If the process was
spawned in a thread, the thread safety of the GUI must be
considered. The second solution is the only real choice if
you want to provide feedback, and armed with the
EventQueue methods listed above, it’s easy to accommo-
date.

For this sample application I copy a collection of files
from one location to another. This is a classic example of a
process for which you want to provide feedback. This appli-
cation copies all the source files from the Java SwingSet2
demo to the temp directory (hey, I had to copy something
from somewhere to somewhere else, didn’t I?). As you can
see in Figure 2, the user interface provides feedback on the
percentage of completion for the two tasks. First, the appli-
cation deletes the files from the target directory (if they’ve
been previously copied there) and then copies the source
files to the target.

Because there are two threads with common traits at
work in this application, I first declared an abstract thread
class to encapsulate the similarities. This class appears in
Listing 3. Two characteristics are required from each thread.
First, they must have a reference to the frame class to access
the UI widgets to notify them of the progress. Second, a ter-
minate request flag will appear in this base class. As you
probably know, the thread stop() method has been depre-
cated in Java 2 because it can lead to undesirable situations.
Now, to be able to stop a thread, you must provide a suicide
watch flag – not so much a command to stop as a request
that the thread commit suicide. Both worker threads sub-
class the abstract WorkerThread class.

The delete thread appears in Listing 4. One item to
note in both threads is the manner in which they interact
with the frame class. The thread doesn’t directly access
the JProgressBar on the frame. Instead, frame methods
are called to handle the actual initialization and updat-
ing. The frame’s initCopyProgress() method is shown
here:

void initCopyProgress(int numFiles) {

jprgrsbrCopy.setMaximum(numFiles);

jprgrsbrCopy.setMinimum(0);

}

The updateCopyProgress() method handles the updat-
ing of the progress bar’s progress.

void updateCopyProgress() {

jprgrsbrCopy.setValue(

jprgrsbrCopy.getValue() + 1);

}

Making the frame’s methods update the progress bar is
a good idea so the thread doesn’t have too much knowledge
of how the user interface is handling the progress mecha-
nism. The UI could now change to incorporate a gauge or

 S w i n g

B u i l d i n g w i t hThread-SafeGUIs

62 MAY 2001

FIGURE 1 Accessing the contents of the list box

FIGURE 2 Thread-safe user interfaces

Java COM

66 MAY 2001

 S w i n g

B u i l d i n g w i t hThread-SafeGUIs

some other progress technique without affecting the
threads. The remainder of the DeleteThread deletes the files
in the target directory. Notice the call to
EventQueue.invokeLater() to update the frame. The last act
of the DeleteThread is to instantiate and call the
CopyThread (see Listing 5). Both threads could have been
created at the same time and the CopyThread made to wait
on the DeleteThread. However, because these two opera-
tions must run serially, it makes sense to spawn one from
the other.

The CopyThread performs many of the same housekeep-
ing operations as the DeleteThread. Most of the code in the
CopyThread concerns itself with copying files, which is not
relevant to this discussion. For our purposes note the call to
update the user interface in a call to EventQueue.
invokeLater().

Building user interfaces that gracefully spawn threads
and in turn report progress along the way is easy once you
understand the requirements built into the Swing applica-
tion framework. Now we have a rich user interface library
that offers better speed and capabilities than the old one.
When necessary, the developer can make it thread-safe to
give it the capabilities of the old AWT framework without the
disadvantages.

AUTHOR BIO
Neal Ford, vice president of technology at the DSW Group, is also the designer and devel-
oper of applications, instructional materials, magazine articles, and video presentations.
He’s written two books, Developing with Delphi: Object-Oriented Techniques and
JBuilder 3 Unleashed.

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import javax.swing.*;

public class BadThread {
public static void main(String[] args) {

JFrame frame = new TestFrame();
frame.show();

}
}

class TestFrame extends JFrame {
public TestFrame() {

setTitle("Bad Thread Example");
setSize(400,300);
setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);
model = new DefaultListModel();

JList list = new JList(model);
JScrollPane scrollPane =

new JScrollPane(list);

JPanel p = new JPanel();
p.add(scrollPane);
getContentPane().add(p, "Center");

JButton b = new JButton("Fill List");
b.addActionListener(new ActionListener() {

public void actionPerformed(
ActionEvent event) {

new WorkerThread(model).start();
}

});
p = new JPanel();
p.add(b);
getContentPane().add(p, "North");

}

private DefaultListModel model;
}

class WorkerThread extends Thread {
public WorkerThread(DefaultListModel aModel) {

model = aModel;
generator = new Random();

}

public void run() {
while (true) {

Integer i =
new Integer(generator.nextInt(10));

if (model.contains(i))
model.removeElement(i);

else
model.addElement(i);

yield();
}

}

private DefaultListModel model;
private Random generator;

}

import java.awt.*;
import java.awt.event.*;
import java.util.*;
import javax.swing.*;

public class GoodThread {
public static void main(String[] args) {

JFrame frame = new TestFrame();
frame.show();

}
}

class TestFrame extends JFrame {
public TestFrame() {

setTitle("Good Thread Example");
setSize(400,300);
setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);
model = new DefaultListModel();

JList list = new JList(model);
JScrollPane scrollPane =

new JScrollPane(list);

JPanel p = new JPanel();
p.add(scrollPane);
getContentPane().add(p, "Center");

JButton b = new JButton("Fill List");
b.addActionListener(new ActionListener() {

public void actionPerformed(
ActionEvent event) {

new WorkerThread(model).start();
}

});
p = new JPanel();
p.add(b);
getContentPane().add(p, "North");

}

private DefaultListModel model;
}

class WorkerThread extends Thread {
public WorkerThread(DefaultListModel aModel) {

model = aModel;
generator = new Random();

}

public void run() {
while (true) {

final Integer i =
new Integer(generator.nextInt(10));

EventQueue.invokeLater(new Runnable() {
public void run() {

if (model.contains(i))
model.removeElement(i);

else
model.addElement(i);

}
});
yield();

}
}

private DefaultListModel model;
private Random generator;

}

Listings 3, 4, and 5 can be found online at
www.sys-con.com/java/source/

Listings 3 - 5

Listing 2Listing 1

nford@thedswgroup.com

Java COM

68 MAY 2001

Their use has sometimes been limited
to replacing traditional CGI scripts for
the processing of HTML form submis-
sions. However, the fact that you can
send and receive serialized Java objects
to and from servlets means they can be
combined with applets as part of simple
distributed object architecture, compet-
ing with RMI, CORBA, and EJB. No tun-
neling is required, and it works in
browsers that don’t support RMI.

Despite my enthusiasm for servlets,
for some applications the interactivity
and graphical capabilities of applets
make them invaluable pieces in the jig-
saw. I once wrote an applet that dis-
played aviation flight paths on a globe
projection that could be zoomed and
rotated about each axis. Try doing that
with a servlet!

Although applets have fallen some-
what out of favor, it’s possible to write
one without regard to whether it will be
downloaded to Internet Explorer or
Netscape, on Windows or UNIX. I was
doing that four years ago, and now with
the Java plug-in down to a relatively trim
5MB in version 1.3 and Java WebStart on
the way, the promise of true “write once,
run anywhere” applets may yet become
a reality.

Applet-Servlet Communication with
Applet Parameters

To accommodate the first applet
within my architecture, I’ll first make a
change to the LoginServlet. The code for
writing out the user’s options as HTML

links (see April JDJ) will be replaced by
code to download an applet with a set of
parameters representing the user’s
options (see Listing 1).

The resulting HTML, containing an
applet tag and a set of parameters, looks
like this:

<applet code=com.lotontech.applets.

OptionsApplet

height=30, width=600>

<param name=user

value=bill></param>

<param name=option1

value=getTasks></param>

<param name=option2

value=transferTasks></param>

</applet>

This passing of parameters to the
OptionsApplet represents the simplest
possible servlet-to-applet communica-
tion mechanism, although I’ll cover a
more useful alternative later in this
article.

The OptionsApplet will now be

responsible for displaying the user
options menu, with each option pre-
sented as an AWT button (see Figure 1)
rather than as an HTML link. I know it’s
not very fashionable to use AWT, but for
this series I’ve decided to concentrate
on the Enterprise aspects and leave the
GUI advice to someone else.

There are two important points to
look for in the OptionsApplet code
included in Listing 2. The first is the
retrieval of the applet parameters repre-
senting the current user’s menu options.
The second is the technique I have used
for launching a new servlet into a brows-
er frame – via the AppletContext – when
an option button is clicked.

The AppletContext is the applet’s
handle on the browser it’s running in. By
calling the showDocument() method it’s
possible to fetch and display any HTML
document the server can provide. You
could replace the current document –
which isn’t such a good idea if it contains
your applet – or display a new document
in a separate frame or a new browser

Techniques for applet-servlet communication

Fitting the Pieces into
the Enterprise Java Jigsaw

WRITTEN BY
TONY LOTON

In Part 1 of this series (JDJ Vol. 6, issue 4) I developed a simple
access control mechanism for my application using HTTP authen-
tication and servlets. In my view, servlets have always been under-
rated as a technology.

E N T E R P R I S E J A V A

Part 2 of 3

AUTHOR BIO
After graduating with a

degree in computer
science and

management,Tony
Loton worked for almost

10 years as a consultant,
course instructor, and

technical author. He uses
his company -

LOTONtech Limited
(www.lotontech.com) - as
a vehicle for researching,

developing, and
commercializing

innovative software
solutions.Tony is

currently writing a
book, Web Mining with
Java, to be published by

Wiley later this year.

...my preferred technique is easy to understand,

doesn’t suffer from
tunneling issues,

and may just be worth a try

“

’’

Java COM

70 MAY 2001

E N T E R P R I S E J A V A

window. I’m doing the latter, and when I
say displaying a document in this con-
text, I actually mean running a servlet
and displaying its response, where the
response might contain yet another
embedded applet.

This applet is only slightly more

impressive than the original HTML links
because I’ve kept it simple to demon-
strate the technique. In applying this to
any real scenario, I’ve often used an
applet to display a multilevel menu via a
Swing JTree that allows users to expand
and contract the various levels in a way
that can’t be achieved easily with HTML
alone.

This kind of multilevel menu would-
n’t be as easy to specify as a flat series of
applet parameters, so the applet-servlet
communication channel would need to
be enhanced to handle the transmission
of more descriptive data. Two methods
for transmitting descriptive data spring
to mind: XML and Java serialized
objects. I’ll cover the latter and, rather
than tire you with yet another menu
variation, I’ll find a different use for seri-
alization within my application.

Applet-Servlet Communication with
Serialized Objects

When user “bill” clicks on his getTasks
button (see Figure 1), he sees a list of the
tasks that are assigned to him. When a
different user, “ben”, clicks that button,
he’ll see a different list. A sample Task
Page for “bill” can be seen in Figure 2.

Once again I’ll use an applet and
servlet combination, but this time in a
slightly different way. When the

TaskServlet is invoked via the
getTasks button, with no
parameters, it serves up an
HTML tag to download the
TaskApplet to the browser. As
soon as the applet is instanti-
ated in the browser, it makes
a second call directly to the
same servlet. This time the
applet specifies a getdata
parameter as part of the URL
connection string, and ex-
pects the servlet to return a
vector of serialized objects
representing the user’s tasks.
In Listing 3 take a look at the
first highlighted code, which
tests the presence of the get-
data parameter. You can then
follow the alternate behavior
that depends on the pres-
ence, or absence, of the
parameter.

After constructing the two
AWT Lists – one for high-pri-
ority tasks and one for low –
during initialization, the
TaskApplet (see Listing 4) rein-
vokes the TaskServlet by open-
ing an InputStream on its
URL, this time with the getda-
ta parameter included in the
URL connection string.

Note that when the applet requests
the task data from the servlet, there’s no
need to specify which user’s tasks
should be returned because the
HttpSession object – accessible from
any servlet – already holds the user
name for the current session, as set by
the LoginServlet at the time of authenti-
cation. (For more about the Log-
inServlet, please refer to my earlier arti-
cle.)

The tasks for the current user are
returned in the form of a vector of serial-
ized Java objects – in this case simple
Strings – that are immediately ready for
use as objects in the receiving applet. The
contents of the vector don’t need to be
Strings, and the container doesn’t need to
be a vector. The only limitation is that any
Java objects transmitted in this way must
be serializable, which for your own objects
means that their class(es) must imple-
ment java.io.Serializable. For Java runtime
classes it means that you can’t transmit
things like JDBC connection objects.

Thus an applet/servlet combination
allows a style of distributed object pro-
gramming that in my opinion is much
underused.

Conclusion
This check-in/checkout style of

object programming using servlets and
serialized objects isn’t suitable for every
situation. Many applications are more
suited to the RMI/CORBA model, in
which objects are passed between dis-
tributed clients and servers by reference
rather than by value (serialized), and
remain at all times at their point of orig-
ination. The issues to consider include
performance (references are smaller
than objects in transmission) and con-
sistency (a remotely referenced server-
side object appears in the same state to
all its clients).

However, my preferred technique is
easy to understand, doesn’t suffer from
tunneling issues (since you’re using
HTTP anyway), and may just be worth a
try before you consider something more
complex.

On the subject of complexity, no
Enterprise Java series would be com-
plete without the appearance of
Enterprise JavaBeans. My next article
will introduce the simplest possible EJB
architecture – consisting of a lone ses-
sion bean – and will suggest (but not
recommend) how this bean’s functional-
ity could instead be provided by a more
complex combination of session beans,
entity beans, and distributed transac-
tions.

tony@lotontech.com

FIGURE 1 OptionsApplet presentation

FIGURE 2 Task Page for “bill”

Java COM

//-- write the options out as an applet --

out.println(
"<applet code=com.lotontech.applets.OptionsApplet
height=30, width=600>");

out.println("<param name=user value="+user+"></param>");

for (int opNum=0; opNum<options.size(); opNum++)
{

String thisOption=(String) options.elementAt(opNum);

out.println("<param name=option"+(opNum+1)
+" value="+thisOption+"></param>");

}

out.println("</applet>");

public class OptionsApplet extends Applet
implements ActionListener

{
public void init()
{
// -- get the user from parameter --
String user=getParameter("user");

// -- GUI would be initialized here --

int opNum=0;
boolean finished=false;
while (!finished)
{
opNum++;

String thisOption=getParameter
("option"+opNum);

if (thisOption==null) finished=true;
else
{
Button newButton=new Button(thisOption);
this.add(newButton);
newButton.addActionListener(this);

}

}

}

// -- ActionListener Method --
public void actionPerformed(ActionEvent event)
{

if (event.getSource() instanceof Button)
{
Button sourceButton=(Button)event.getSource();

// -- tell browser to launch selected app. --

AppletContext theBrowser
=this.getAppletContext();

try
{

URL documentBase=getCodeBase();

URL newURL=new
URL(documentBase,sourceButton.getLabel());

theBrowser.showDocument(newURL,"main");
}
catch (Exception ex) {ex.printStackTrace();}

}

}

}

public class TaskServlet extends HttpServlet
{
public void doGet(HttpServletRequest req
, HttpServletResponse res) throws IOException

{

// -- get the current http session --
HttpSession session=req.getSession(true);

String user=(String)
session.getAttribute("user");

// -- check for null user omitted –

String getdata=req.getParameter("getdata");
if (getdata==null) getdata="false";

if (!getdata.equals("true"))
{
// -- download HTML with task applet tag

}
else
{
// --task applet calling me again for data --

Vector tasks=new Vector();

// -- get connection from datasource --
InitialContext ic = new InitialContext();

DataSource ds = (DataSource)
ic.lookup("java:comp/env/jdbc/LOTONtech");

Connection con = ds.getConnection();

// -- select user tasks from the database --
Statement st=con.createStatement();

ResultSet results=st.executeQuery(
"SELECT username, task , priority
FROM usertasks WHERE username='"+user+"'");

while (results.next())
{
Task thisTask=new Task(results.getString(2)
, results.getString(3));

tasks.addElement(thisTask);
}

// -- return serialized vector to the applet --
ObjectOutputStream taskStream = new
ObjectOutputStream(res.getOutputStream());

taskStream.writeObject(tasks);
}

}
}

public class TaskApplet extends Applet
{
public void init()
{
// -- get the user from parameter --
String user=getParameter("user");

// -- set up the GUI Lists --

this.setBackground(new Color(0,0,128));
setLayout(new GridLayout(1,2));

java.awt.List highList=new java.awt.List();
highList.add("HIGH PRIORITY");
highList.add("");
add(highList);

java.awt.List lowList=new java.awt.List();
lowList.add("LOW PRIORITY");
lowList.add("");
add(lowList);

try
{
// -- get user tasks from task servlet --

URL servletURL=new URL(this.getCodeBase()
,"getTasks?getdata=true");

ObjectInputStream taskStream=
new ObjectInputStream(servletURL.openStream());

Vector tasks=(Vector) taskStream.readObject();

// -- and display them in 2 lists --

for (int taskNum=0; taskNum<tasks.size();
taskNum++)
{
Task thisTask=(Task) tasks.elementAt(taskNum);

if (thisTask.priority.equals("high"))
highList.add(thisTask.taskName);

else if (thisTask.priority.equals("low"))
lowList.add(thisTask.taskName);

}

}
catch (Exception ex)
{
// -- send error to Java Console --
ex.printStackTrace();

}

}
}

Listing 4: TaskApplet

Listing 3: TaskServlet

Listing 2: Options Applet Java Code

Listing 1: Writing User Options as Applet Parameters

Java COM

72 MAY 2001

Part 1

It
’s

 q
u
ic

k
,

a
n
d
 it

’s
 e

a
sy

 –
 li

g
h
tw

ei
g
h
t

te
le

p
h
o
n
y
 a

p
p
lic

a
ti
o
n
s

u
si

n
g
 J

a
va

Written by Kent V. Klinner III & Dale B. Walker

Telephonene access to the

Web is the latest craze sweeping the dot-come

landscape. Voice portals with names likeh

BeVocal, Quack.com, Tellme, and AudioPoint BeVocal, Quack.com, Tellme, and AudioPoint

are promising all callers easy access to news,a

traffic reports, stock quotes, and driving nd

directions. Some of these services may flashs m

and burn as quickly as a California brushfire,br

but they represent the leading edge of a mucha m

larger trend that began several decades ago

and has accelerated with advances in audio-

and speech-processing technologies: the

convergence of voice and data networks.

BuildingBuildinguildingga a Telephone/Voice Portal with JavaTelephone/Voice Portal with Javag

Java COM

74 MAY 2001

With 2 billion telephones and over 400 million cell phones in
use today, the sheer scale of this convergence may lead to the
most profound changes in our communication networks since
the advent of the Web browser.

Emerging standards for voice-over IP and wireless access
protocols present systems designers with many choices for
remote access technologies, but the predominant communica-
tion device, the plain old telephone, means that voice gateways
can open data services to a larger population of users than any
other available technology.

Java developers are in a strong position to drive voice and
data network convergence with cross-platform software for
servers, consumer devices, Internet appliances, and mobile
handsets. With server-side components for telephony and voice
processing, Web content, online databases, and e-mail will be
just a phone call away. Client-side applets for mobile devices,
handsets, and Internet appliances will deliver applications
directly to users at the mobile edges of the Net.

Bridging the circuit-switched world of the telephone and the
packet-switched world of the Internet can be a daunting task.
Controlling telephone devices, detecting touch tones, and pro-
cessing caller ID packets and digitized voice often require pro-
gramming in C or an assembly language for arcane platform-

specific hardware. With the information and resources in this
article, Java developers can add basic telephone and voice serv-
ices to their applications quickly and easily.

The market is still testing the value of voice-recognition
access to driving directions and cinema schedules. The real
value in voice/data convergence technologies may emerge with
the development of more personal services, like remote control
of your office network, telephone access to your home security
system, or mobile access to e-mail, faxes, and voice messages
through your existing office or home telephone number.

This article describes a fast and easy way to develop light-
weight telephony applications with Java. In the process we
hope to demonstrate that Java is the most powerful and
robust language for developing and deploying sophisticated
services for voice and data networks. With the phonelet
framework for telephony services you’ll be able to get started
immediately.

We’ve defined a phonelet as the most basic element of a
voice portal service application. Servlet developers will immedi-
ately recognize the similarity between phonelets and servlets.
The phonelets described here shouldn’t be confused with Java
applets that run within cell phones and other portable devices
running a Java VM.

Java COM

76 MAY 2001

Nuts and Volts
What Is a Voice Portal?

A voice portal is really nothing more than a call center with
connections to Web services, some voice recognition services
for navigation, a speech synthesis engine for converting text
output to the caller, and, usually, some kind of programming or
scripting capability. A voice portal application provides a service
that can be accessed from the convenience of a telephone or a
cell phone. VoiceXML (VXML) is emerging as a popular standard
for scripting dialogs. This article focuses primarily on the use of
Java to develop voice applications, but we’ll discuss the advan-
tages of VXML in Part 2 of this series.

A voice portal application must talk to its user. All user input
and output is through narrow-bandwidth audio channels. A
voice application must operate efficiently and reliably with
nothing more than audio input and output in a narrow range
between 30 and 4,000Hz.

A voice portal application developer is essentially a signal
processing engineer. Developers must write applications that
can filter audio input streams for user commands and convert
all output to an audio stream that can be understood by the
caller. Fortunately, the developer’s problem is made a bit sim-
pler by telephone touch-tone signals, speech-processing com-
ponents, and the digital signal-processing functions of telepho-
ny boards and voice modems. An understanding of audio signal
processing will help, but isn’t necessary.

How to Program Voice Portal Applications
There are two ways to program voice portal applications: (1)

use a standard programming language like C or Java, or (2) use a
standard scripting language like VXML or one supplied by the call
center manufacturer or voice portal service. The usual trade-offs
apply. Using the former offers the developer the most power, but
may impose the burden of complexity or machine dependence.
The latter approach is often easier, but may not allow the flexi-
bility and sophistication available to C and Java programmers.

VXML is emerging as an excellent choice for scripting cross-
platform phone/voice services. IBM has announced that their
forthcoming VoiceServer will support VXML, and Tellme networks,
one of the high-profile voice portals, offers developers access to
their VXML programming toolkit. Installing your own VXML serv-
er can be complicated and expensive. This article describes a light-
weight phone/voice service framework that you can use to devel-
op personal voice services on your own home or office network.
We’ll demonstrate how to add telephone access to servlets and
applications with an inexpensive voice modem and a simple Java
framework for processing caller ID, touch tones, and digitized
voice. The example code, found on the JDJ Web site, www.javade-
velopersjournal.com, will demonstrate how to process caller ID
packets to announce incoming calls and how to detect touch
tones, play and record audio, and generate speech using a third-
party speech synthesis application like IBM’s ViaVoice. With the
phonelets framework included in the Resources section at the end
of this article, Java developers can create cross-platform applica-
tions combining phone, voice, and Web services.

Phones Are from Venus, PCs Are from Mars
To grasp the challenges and limitations of a voice portal serv-

ice, you should understand something about telephone tech-
nology. Telephone line signals span a broad range of voltages
from 12 to 110v. Computer interfaces operate in a relatively nar-
row range of voltages under 5v.

The connection between your telephone and the local
branch exchange is called the local loop and is simply two twist-
ed copper wires. The audio from both parties and the signals to
dial another party, signal a busy connection, or initiate ringing
must be conveyed on those two wires in a narrow audio band-

width channel between 30 and 4,000Hz.
Telephone company switching systems have advanced as

rapidly and as dramatically as computers. Actually, telephone
switching requirements drove much of the computer revolu-
tion. By contrast, our telephone handsets and the local loop
have changed little. The challenge for telephony engineers has
been to extend new services to local loop customers while
maintaining compatibility with a design specified almost a cen-
tury ago. The simplest solution has been to overload the local
loop connection with audio control tones. Touch tones and
caller identification packets are familiar examples of audio con-
trol signals conveyed through the local loop.

The telephone interface circuits of modems and telephony
cards have been bridging these two worlds for decades. Even in
an age of digital PBXs and broadband services, a good analog
modem with voice and fax capabilities can be a powerful tool for
application developers.

Modems Are Signal Processors
While cell phones, PDAs, and Web browsers have captured our

hearts and our wallets, the common modem has continued its
slow march of progress in relative obscurity. We take it for grant-
ed. It’s an essential part of every PC and laptop because any PC or
laptop without dial-up access to the Internet would be seriously
limited. Today’s modems bear little resemblance to their raucous,
slow, and limited forebears of the 1970s and ’80s. Today’s modems
have almost as much processing power as a PC of 15 years ago.
The best modems are marvelous little packages of signal process-
ing and telephone line control. Understanding them is essential
to understanding the capabilities and limitations of your system.

In the early 1990s modem manufacturers began adding
voice processing and tone-detection capabilities to the basic
tone-generation function necessary for touch-tone dialing.

FIGURE 1 Voice portal building blocks

Audio Filtering

Phooneletso

Phonelet Servicessel

Call Disppatcheerpatchep epa

Virtuaual Phoneual Phonehon

Telephone Devivice HandlersdleHandd rsivic

ephone Linesnese LPlain Old Telepep

Audio

Control

Speech Synthesis

Speech Recognition

VXML Processing

Java COM

78 MAY 2001

Today inexpensive voice modems offer audio encoding and
decoding at a variety of rates and resolutions and in a variety of
formats. Many modems will deliver out-of-band events like key-
pad tone detection, silence detection, busy-signal detection,
and fax synchronization tone. Some modems offer caller ID
reporting, automatic volume control, and full duplex operation.

Unfortunately, modems are often poorly documented and
their behaviors don’t adhere to anything more stringent than de
facto standards. The phonelet framework simplifies modem
programming with a GenericVoiceModem class that you can
extend to adjust to the specific characteristics of your modem.

While modems simplify many of the routine tasks of call ini-
tiation and termination, they don’t insulate the software devel-
oper from all the vagaries of an analog communication channel.
Java developers who have never written telephony software or
programmed a modem may be surprised at how difficult it is to
write an application that can handle the demands of streaming
audio as well as the complexities of telephone and modem con-
trol and still remain responsive and robust to unpredictable
events like DTMF (Dual Tone Multiple Frequency) tones, caller
hang-up, or device failure. The phonelet development frame-
work hides much of the complexity of modem control and sig-
naling behind a simplified interface so that Java developers can
concentrate on the application logic.

Voice Portal Building Blocks
A basic understanding of the components of a voice portal

system will help you understand the capabilities and limitations
of voice and telephone access to digital networks. Figure 1 illus-
trates the basic architecture of a voice portal system. The major
components are (1) telephone device handlers, (2) a phone call
dispatcher, (3) a set of voice portal applications, and (4) a set of
application services.

A virtual phone abstraction can simplify the application’s
interaction with the caller and hide some of the details of tele-
phone line control and signaling. Application services might
include libraries for audio signal processing, speech processing,
and application scripting support for VoiceXML. VoiceXML is
beyond the scope of this article, but you can find lots of infor-

mation and support on the Web sites of TellMe Networks,
Nuance, and IBM.

Emerging standards in telephony and speech processing
promise to simplify the development of robust scalable applica-
tions, but many of these standards are in flux and not fully
implemented. You may need to work around limitations in com-
ponents and APIs.

Call Dispatcher – PhoneServerLite
PhoneServerLite (see Resources section) is a simple phonelet

host that implements the most important features of a voice
portal server.
• It acts as the call dispatcher, passing incoming phone calls to

the phonelet applications for service (the first phonelet to
answer the call gets the service).

• It supports multiple telephone lines and multiple phonelet
applications.

• It’s threaded for efficient multiuser applications.
• It’s resilient to phonelet service failures (bugs in developer

code).
• It’s resilient to device failure and disconnection.
• It’s scalable from laptops to multiprocessor servers.
• It’s easy to configure.
• It’s easy to extend with custom device handlers and

phonelets.

PhoneServerLite configures itself at start-up, and expects the
following file folders to contain configuration information,
phonelets, and device handlers:
• Phonelets: Contains the class files for each phonelet applica-

tion. The file phonelet.txt identifies the phonelets to be
loaded at start-up of PhoneServerLite. The sample file docu-
ments the format.

• Devices: Contains the class files for your custom voice modem
device handlers. The file devices.txt specifies the devices (i.e.,
modems) and the parameters. The sample file documents the
format.

• Files: PhoneServerLite creates a folder for each phonelet
specified in the phonelet.txt configuration. A phonelet may
store permanent files in its file folder. A phonelet can get a file
reference to its permanent file folder with the
PhoneletConfig.getFileFolder() method.

• Temp: Temporary files go here. Each instantiation of a
phonelet will have its own folder within the “temp” folder. A
phonelet may store temporary files in its temp file folder. A
phonelet can get a file reference to its temporary file folder
with the PhoneletConfig.getTempFolder() method.

• Resources: Contains resources available to all phonelets,
including prerecorded sounds.

The PhoneServerLite start-up procedure is simple.
1. It loads the voice modem device handlers specified in the

devices/devices.txt configuration file.
2. It loads and initializes each phonelet specified in the

phonelets/phonelets.txt file.
3. It listens for incoming phone calls on each line owned by a

device handler and dispatches a service notification to each
phonelet when a line rings.

PhoneServerLite dispatches phone calls to phonelets in the
order in which the phonelets are loaded (the order in which they
appear in the phonelets.txt file). The first phonelet to answer a
call handles it. When the phonelet has finished, PhoneServerLite
resets the device (hanging up the line in the event that the
phonelet fails to terminate the call) and returns it to the waiting
condition. Phone calls are dispatched after the second ring
because PhoneServerLite gives the device handler an opportu-

TABLE 1 DTMF frequency table

DTMF 1209Hz 1336Hz 1477Hz 1633Hz
97697Hz 1 2 3 A

77770Hz 4 5 6 B
5852Hz 7 8 9 C

94941Hz * 0 # D

TABLE 2 Sample list for Lucent modem chips

 Code Char Description
 0-9, A-D, * # DTMF Tones
 a Answer tone
 b Busy tone
 c gFax calling tone
 d Dial tone
 e gData calling tone
 h Local phone on hook

H pLocal phone off hook
R Ring

 s pSilence timer has expired

Java COM

80 MAY 2001

nity to detect the caller ID packet, which arrives as a sequence of
signals between the first and second ring.

Telephone Device Handlers: GenericVoiceModem
We’ve chosen to present the phonelets framework with device

handlers for voice modems instead of more sophisticated tele-
phony boards because: (1) modems are inexpensive and readily
available; (2) they meet the minimum hardware requirements for
telephone line control, audio capture, audio play, and tone detec-
tion; and (3) they’re relatively easy to program through a serial
port interface. Telephony cards from manufacturers like Dialogic,
Periphonics, and Lucent are far more sophisticated, often includ-
ing onboard signal processors, but they’re more expensive, not as
readily available, and, most important of all, not always program-
mable in Java. Voice modems will keep our discussion at a stick-
and-rudder level. Everything you learn from this article applies to
more sophisticated hardware, but along the way you’ll experience
the thrill of flying low with minimal equipment.

Applications communicate with modems through serial
interfaces, either physical or virtual. PhoneServerLite includes a
SerialPort class and a native driver for Windows 95/98/NT users
who can handle the relatively high serial data transfer rates
required for digitized audio. JavaSoft’s javax.comm serial pack-
age for Java has failed with buffer overrun and underrun errors
at speeds far below those necessary for audio applications.
SerialPort and SpeedSerialWin32.dll simplify the developer’s
interface to serial ports and provide a stable driver for sustained
high-speed serial transfers.

Modems are notoriously difficult to program, and their com-
mand sets are often poorly documented and inconsistent.
PhoneServerLite includes a GenericVoiceModem class that
developers can extend to support the voice modem of their
choice. GenericVoiceModem implements the VoiceModem
interface and makes no attempt to support data and fax com-
mand sets. Its sole function is to provide a simple and reliable
interface for common voice modems. Check our Web site for
future updates that will add support for fax and data capabilities.

PhoneServerLite loads all VoiceModem device handlers spec-
ified in the devices.txt configuration file. GenericVoiceModem
implements support for voice modems based on the popular
Rockwell/Conexant chip set (e.g., Best Data Smart One, Comtrol
RocketModem, and some 3COMHz modems).

Voice Portal Servlets: Phonelets
A phonelet is a lot like a servlet: it’s the bare essence of an appli-

cation. Phonelets embody only the essential logic and data of an
application and they can live only in the nurturing environment of
a host. The phonelet’s simplicity frees the developer from the com-
plexities of telephone device management, call dispatching, sched-
uling, and error handling. Phonelet developers can focus on the
essential components of an application and forget about the details.

A phonelet, like a servlet, has a simple life cycle: (1) init, (2)
service, and (3) destroy. It depends on its host to feed it with
service requests and provide support functions. Phonelets can
provide textual descriptions of themselves with the
getPhoneletInfo() method.
• Init (PhoneletConfig config): The phonelet host calls the init()

method only once before invoking the service() method.
• Service (PhoneCall call): The phonelet host (e.g.,

PhoneServerLite) delivers incoming phone calls to the
phonelet’s service() method. When the phone rings, the
phonelet can check the ring count, the caller ID, and the
incoming line to determine whether it will answer the call.

• Destroy (): The phonelet host calls the destroy() method only
once, and only after it has called the phonelet’s init() method.
The phonelet host won’t invoke the phonelet’s service()
method after the destroy() method is invoked.

The javadoc files for the phonelet API are included in the
Resources section. Developers should be familiar with just six
principal components:
1. PhoneletConfig: Passed as the argument to the init() method.

Contains accessors for initialization parameters, the file base,
the temp file base, and the PhoneletContext object.

2. PhoneletContext: Contains accessors for system properties
and the call dispatcher. All PhoneServerLite phonelets share
the same context.

3. CallDispatcher: Manages phonelets, devices, and phone
calls.

4. Phone: The virtual phone.
5. PhoneCall: Encapsulates the virtual phone and the caller ID

information.
6. CallerID: Encapsulates the caller ID packet info.

Getting Started Quickly with HelloCaller Phonelet
HelloCaller is a very simple example of a phonelet. Think of

it as the audio equivalent of “hello world.”

public class HelloCaller extends GenericPhonelet{

public void service (PhoneCall call) throws IOException

{

Phone phone = call.answer(this);

phone.play(hello.wav);

phone.hangup(this);

}

}

The phone.play() plays the WAV sound file to the caller through
the voice modem’s audio transmit capabilities. The sample rate
and resolution of the audio WAV file must match the voice capa-
bilities of your modem. If you try to play a 22kHz 16-bit WAV file
through a modem that only supports 8kHz 8-bit audio, your caller
will be very displeased with the result. We’ll discuss audio stream-
ing in more detail in the next part of this series, but you can check
the Java documentation for API details. Writing a simple phonelet
that speaks to a caller is very easy with the phonelet framework.

How to Detect Touch Tones
When you dial a telephone number or punch keys to navigate

a voice mail system, your telephone generates a tone for each key
that comprises two distinct audio frequencies. These DTMF fre-
quencies, carefully chosen as unlikely components of human
vocalizations, are listed in Table 1. Note that there are actually 16
combinations of frequencies, four of which aren’t commonly
used because they’re not available from a telephone touchpad.

These signals propagate unhindered through the telephone
network and are decoded on the receiving end by tone detec-
tors. The DTMF system is a relatively new development in a tele-
phone system that has undergone only about three user inter-
face upgrades in a century.

In 1941 AT&T introduced touch-tone dialing for central
office operators in Baltimore, Maryland. The speed advantage of
touch-tone over rotary dialing offset the significant cost of the
electronics. The first affordable touch-tone telephones were
introduced in 1962. Touch-tone service would not be widely
available in the U.S. until the 1970s.

DTMF tone generation and detection fostered the develop-
ment of a wide array of touch-tone services and equipment,
including voice mail, automated attendants, and telephone bank-
ing. It’s now a part of our lives and a foundation component of any
voice portal system. Touch tones may be the single most useful
signaling component of a voice portal system. When was the last
time you called a business and a human answered immediately?

Modems listen for caller DTMF. When a modem detects a
DTMF tone, it sends a 2-byte data packet to the computer. The

82 MAY 2001

first byte of the packet is the shield code – 0x10 for most
modems – which lets the computer know that the next byte con-
tains a code that specifies a signal event on the line. For touch-
tone events the second byte is the ASCII character of the key
pressed. Other event codes are also transmitted in this matter.
The exact set of codes supported varies by modem chip set. A
sample list for Lucent modem chips is given in Table 2.

Shield codes are passed to the computer in the incoming
data stream. If the modem is also in voice-receive mode, the
shielded data packet is inserted into the audio stream and must
be detected and separated. Otherwise, not only will the infor-
mation be lost, but the audio will sound really weird. The
GenericModem class provides this filtering.

The difficulty in handling touch tones in a voice portal system
is that they may come at any time. A caller isn’t a computer that
can be directed to deliver a touch tone within a specific time win-
dow. It’s a human being whose clumsy fingers might not press
the telephone keypad with the frequency and precision that we
demand from machines. The phonelet framework gathers touch
tones into a buffer and dispatches an event to the phonelet,
which is responsible for monitoring and clearing this buffer.

Every phonelet implements the PhoneUser interface. Touch
tones and other shielded codes are delivered as asynchronous
events through the phoneEvent() method. Your phonelet is
responsible for processing touch-tone event characters, deliv-
ered one character at a time. The default PhoneHandler buffers
touch tones and provides an accessor method, getTouchtones(),
that allows you to retrieve the contents of the touch-tone buffer
as a string. There is also a method for clearing the touch-tone
buffer, clearTouchtones(). You may, however, manage your own
touch-tone buffer, as illustrated in the code snippet below.

StringBuffer touchtoneBuffer = new StringBuffer();

public void phoneEvent (PhoneEvent event) {

if (event.getType() == PhoneEvent.TOUCHTONE)

touchtoneBuffer.append((char)event.getValue());

}

As a convenience to developers, the play() and record() meth-
ods can always be interrupted by a single touch-tone character
without additional processing by the phonelet. Interrupting an
outgoing message or an audio recording with a specific sequence
of touch tones, however, is a more complicated function and
must be implemented by the phonelet developer.

Putting It Together
Listing 1 demonstrates a simple answering service that plays a

greeting, detects touch tones, and records a message after a beep.

In the Next Part...
The next article in this series will describe audio

streaming in more detail, demonstrate how to incorporate
caller identification services, demonstrate remote control
of home appliances with touch tones, and discuss some of
the challenges of speech recognition and synthesis.

Resources
• MessagePhonelet.java: Source code demonstrating

how to record and play voice messages, how to gener-
ate synthetic speech from text, and how to use touch
tones to control program flow.

• AnnouncePhonelet.java: Demonstrates how to
process caller ID packets. Announces an incoming call
and the identity of the caller if the phone number (as
delivered by caller ID) is contained in a contacts data-
base.

• Talker.java: Source code for a wrapper to simplify use

of a JSAPI speech synthesis engine. Has been tested with
IBM’s Via Voice and Speech for Java SDK.

• CallerID.java: Source code for a caller ID object that parses
unformatted caller ID packets.

• PhoneServerLite: A multithreaded phonelet host with load-
able device handlers and phonelets. Includes javadoc docu-
mentation for phonelet framework.

• SpeedSerialWin32.dll: Win 95/98/NT native library for high-
speed serial access. JavaSoft’s javax.comm package provides
adequate support for serial data transfers at low speeds, but
fails at the relatively high speeds necessary to record and play
digitized voice with an external voice-enabled modem. The
javax.comm package is unnecessarily complicated by an
attempt to wrap the parallel and serial ports into a single
package. SpeedSerialWin32 simplifies the programmer’s view
of the serial port and provides reliable high-speed serial
transfers.

• CommonVoiceModemCommands.txt

Recommended Reading
1. Lindley, C. Digital Audio with Java. Prentice Hall.
2. McClellan, J.H., et al. DSP First: A Multimedia Approach.

Prentice Hall.
3. Pierce, J.R., and Noll, A.M. Signals: The Science of

Telecommunications. Scientific American Library Series.
4. Rorabaugh, C.B. DSP Primer. McGraw-Hill.

Web Links
1. A brief history of TouchTone: www.research.att.com/histo-

ry/64touch.html
2. VoiceXML forum: www.vxml.org/
3. Nuance is rich with downloads and information for develop-

ers: www.nuance.com/
4. IBM speech technologies: www-4.ibm.com/software/speech/
5. Caller ID FAQ: www.ainslie.org.uk/callerid.htm
6. JTAPI: www.javasoft.com/products/jtapi/
7. JSAPI: www.javasoft.com/products/java-media/speech/

AUTHOR BIOS
Kent V. Klinner III, chief technical officer at TransPhonic, Inc., develops platforms and components
for portable and wireless devices. An electrical engineer who still likes to get close to the
hardware, he’s been developing Java since 1995.

Dale B.Walker is principal engineer at TransPhonic, where she develops applications for mobile
and wireless devices. Dale is an electrical engineer with 20 years of broad experience.

public void service (PhoneCall call) throws IOException {
Phone phone = call.answer(this);
if (phone == null) return;
String one = "1";
int loopCounter = 0;
double beepLength = 1.2; // seconds
int beepFreq = 1000; // cycles/second
while(loopCounter < 3){
phone.play(new File("pressOneToLeaveAMessage.wav"),one);

if (getTouchtone().equals(one)){
phone.play(new File("leaveYourMessageAfterTheBeep.wav"));
File messageFile =

record(maxTime,maxSilence,beepFreq,beepLength,null);
break;

}
pause(5); // wait 5 seconds
loopCounter++;
}

phone.play(new File("goodbye.wav"));
phone.hangup(this);
}

Listing 1

kvk@transphonic.com

dbw@transphonic.com

Java COM

Java COM

84 MAY 2001

Distributed Logging Using
the Java Message Service

WRITTEN BY
DAVID CHAPPELL &

GREG PAVLIK

Every software system has logging requirements so application
processing can be monitored and tracked. Modern distributed sys-
tems, which are usually based on application frameworks, require a
logging solution that can cope with multiple processes on multiple
hosts sending logging information to a single logging service.

A flexible solution for enterprise
computing environments

J M S

Many application frameworks widely
used today, whether they’re high-level
frameworks like J2EE application
servers or low-level frameworks like
CORBA ORBs, don’t provide a distrib-
uted logging facility for application
code. Using JMS queues to log applica-
tion messages is a portable, framework-
independent way to efficiently log mes-
sages in a distributed system.

Distributed Logging Solutions
It’s usually a given that a distributed

application needs to keep a centralized
application log. We’ve seen many ad hoc
solutions, which are often implemented
on a per-application basis. A common
way to develop these logging servers is
to use low-level APIs, often with the C or
Java socket APIs. Logging clients con-
nect by opening a socket and pushing
bytes to a log service. Since socket pro-
gramming is low-level and often error-
prone, the logging services are some-
times constructed with an RPC-based
distributed object framework such as
CORBA or RMI. This provides a higher
layer of abstraction to work with, but it
still means application developers have
to build fundamental application servic-
es instead of focusing on the most
important task at hand – building real
business solutions.

Homegrown distributed logging
services are often based on synchro-

nously logging API calls. This means the
logging client is forced to block while
the logging service processes the mes-
sage and makes a persistent record in
the log. Implementations that support
concurrent clients can encounter per-
formance problems related to lock con-
tention in the logging server. In some
cases logging services will have internal
message queues, so that blocking
occurs only through the log message
queuing and not throughout the entire
logging process. While this approach
takes care of the synchronous blocking
problem, it’s time-consuming and diffi-
cult to implement efficiently and reli-
ably, particularly if the solution needs to
be coordinated with global or distrib-
uted transactions. There are many
issues to consider with regard to failure
and recovery scenarios for the queue
itself and the rules of interaction
between the logging client and the log-
ging service under such undesirable
conditions.

This matter can be further compli-
cated by geographically dispersed
deployments. A distributed application
may not be localized to one physical
location. Globally distributed applica-
tions would presumably need to com-
municate with the centralized logging
system in a secure and reliable fashion
over the Internet. As illustrated in
Figure 1, you’d likely funnel logging

information through intermediate
aggregation servers in order to play
nice in a firewall environment. These
intermediate logging services act as a
common conduit that all local applica-
tions communicate through. Ideally,
these intermediate aggregate servers
would be capable of storing log infor-
mation in case the centralized logging
server became temporarily unavail-
able.

If you were to build a subsystem
from scratch that solves all these issues,
you’d wind up with something similar to
a full-blown JMS queue implementa-
tion. Why not use one from the start? It
makes perfect sense to base the logging
server and its message queue on a com-
mon middleware standard and use a
common off-the-shelf solution. JMS is
an ideal middleware layer that enables
distributed logging clients to log mes-
sages asynchronously in a uniform and
platform-independent way.

It’s a natural and pleasant experi-
ence to start using JMS to do the same
kinds of things that are often done with
system-level protocols. JMS has an
added advantage as it provides multi-
ple message types for dealing with dif-
ferent kinds of data formats, each with
its own set of helper APIs for construct-
ing and deconstructing messages. JMS
also accounts for the problems that
arise when the intended receivers aren’t

Java COM

86 MAY 2001

J M S

currently up and running – a crucial
advantage for systems that require high
reliability and accurate application log-
ging. With JMS, senders and receivers
are abstractly decoupled from each
other. An application may send a mes-
sage to an intended receiver, even
when the receiver is not available. The
JMS system stores messages on the
receiver’s behalf until the receiver is
available. These are important system-
level services that would otherwise
have to be written by application pro-
grammers who could be more produc-
tive developing the actual business
applications.

In addition, using JMS as the means
for a logging mechanism provides the
following benefits:
• Simple, yet flexible standards-based

API to be commonly shared among all
applications.

• Nonblocking asynchronous place-
ment of log data into the log queue.

• Guaranteed once-and-only-once de-
livery of critical log data to the cen-
tralized logging application.

• Guaranteed ordering of log messages.
Messages will automatically be re-
ceived by the logging application in
the relative order in which they were
originally placed in the log queue by
the senders.

• Well-defined messaging models and
message delivery semantics.

• High availability of logging services.
Error conditions and the complexities

of failure scenarios are handled trans-
parently by the JMS provider or in the
interface between the application
code and the JMS provider.
As shown in Figure 2, substituting a

JMS system as the mechanism for deliv-
ering the log data to the centralized log-
ging server removes a great deal of com-
plexity that you would have had to build
and manage.

JMS provides support for two mes-
saging paradigms, publish/subscribe
and queuing. Publish/subscribe is a
broadcast model, which is analogous to
an event service. Messages are pub-
lished to virtual channels called topics
and every client registered as a listener
for a topic receives the message.
Queuing is a point-to-point model.
Clients send messages to designated
endpoints where messages are en-
queued. The message queue is persist-
ent and can be thought of logically as a
stack; a message pushed on to a queue
will be delivered to a single message
consumer. This article uses JMS queues
for building application logs.

Logging Queue
Since we’re using JMS, the hard work

is already done. There’s no need to write
any infrastructure code at all: JMS pro-
vides virtually everything needed for a
robust logging service. We need to pro-
vide only a logging service implementa-
tion that reads the log messages from
the queue and does whatever is appro-

priate for the application. Since the
queue is persistent, we don’t worry
about losing messages. For some JMS
implementations, it’s necessary to use
an administrative console to set up the
queue before clients can successfully
connect to it. If that’s the case, creating
an administered object through the
console is generally as simple as assign-
ing a name. Self-administered JMS
implementations don’t require any
setup.

Generic Entry Point
To use the queue as a basis for dis-

tributed logging, we’ll need to define a
mechanism for the logging client to
write the JMS queue. In general, it’s good
programming practice to provide a layer
of indirection between application code
and protocol-specific APIs – the fact that
we’re using a JMS queue to support dis-
tributed logging should be completely
transparent. This may be important if
you already have a logging subsystem in
place.

Migrating each application toward a
JMS-based solution can be done sepa-
rately, obviating the need to coordinate
the upgrade of all applications in tan-
dem. In other cases, your application
server may provide distributed logging
and management capabilities already.
Preferably the transport mechanism is
dynamically configurable. In Java, this is
accomplished with interfaces and
Factory classes. Finally, the logging API

FIGURE 1 The challenge of centralized logging in a geographically dispersed environment

San Francisco

Centralized Logging
Server

Da s

Bosto
n

Application Application

Application

Application

Application

Internet

Applicationn

Application

Application

Logging
Service

Logging
Service

Loggingg
Service

Logging
Servicee

Internet

Internet

FIGURE 2 JMS handles the complexity of reliability and security across geographical dispersion

San Francisco

Centralized Logging
Server

Da s

Bosto
n

Application Application

Application

Application

Application

Internet

Applicationn

Application

Application

Internet

Internet

JMS
Server

JMS
Server

JMS
Server

JMS
Server

Java COM

88 MAY 2001

should be simple and straightforward.
Listings 1 and 2 show a simple logging
interface and implementation that uses
a JMS server to write a log message to a
queue. Many applications have more
complex log message requirements, so
this is an illustrative example.

Access to the client logging imple-
mentation is provided by a factory class
(see Listing 3).

Log Processing
The logging server may send the data

to any number of sources: files, databas-
es, a terminal console, and more. It
depends on the specific requirements of
the application. In general, simple seri-
alized logging to a file or a terminal con-
sole can be accomplished using a JMS
MessageListener. The JMS server will
automatically serialize messages, elimi-
nating the need for lock management in

the logging service code. Listing 4 pro-
vides an example of a MessageListener
that logs messages to standard err on
the terminal screen.

A more complicated logging service
might interact with the queue and a data-
base log using global transactions. It
might also want to process many mes-
sages off the queue concurrently. For
these kinds of requirements, an EJB 2.0
message-driven bean may be a more
appropriate way to implement the pro-
cessing logic of the logging service. The
EJB container can provide support for
global transaction management and con-
current message processing, greatly sim-
plifying the development of the logging
service. In addition, the EJB server should
provide fault tolerance for the log service
itself. In this case, the logging service
might have to manage lock contention for
writing to log files, but since writing to the

log file has been decoupled
from application processing by
the JMS queue, this doesn’t
present a performance issue.

J2EE
J2EE-based applications

are hosted by application
servers that often run a single
logical application in many
different virtual machines.
This allows the application
server to transparently pro-
vide scalability and fault toler-
ance to applications built
using J2EE components.
Application servers are a per-
fect use case for a distributed
logging facility because the
replicated application server
instances are all servicing
clients of a single application.
In most cases it’s optimal for
the application to use a single
log. Servlets and EJBs can sim-
ply access a singleton logging
client API similar to the one
we presented above. JSP
developers, on the other hand,
shouldn’t be forced to write
Java code unless it’s absolutely
necessary. The JSP 1.1 specifi-
cation provides a facility for

writing custom tag extensions. A logging
tag could be implemented as shown in
Listing 5.

The tag we’ve defined can be used in
a natural way by a JSP developer.
Logging to the JMS queue in a JSP
becomes as simple as adding a new ele-
ment to an XML document:

<app:log message="Application suc-

cessfully processed request." />

Another advantage to using JMS as
the basis for distributed logging in a
J2EE application is that JMS is a part of
J2EE, so a JMS implementation will be
provided with the application server. As
a practical matter this means a JMS-
based logging solution should not incur
a large expense.

Beyond J2EE
A J2EE-based application is only one

example of a distributed architecture,
and J2EE accounts for only a fraction of
distributed Java applications. Many Java
applications rely on Java RMI or CORBA,
directly on JMS, or on a low-level proto-
col such as Sockets for tying together dis-
tributed components. Applications
based on any of these protocols and the
architectures they suggest can benefit
from a distributed log service. All the
advantages of building a log service
around JMS apply equally well to these
applications. Many JMS vendors provide
a set of C APIs for their JMS server imple-
mentation, which means that JMS can
be used as a communication protocol
with non-Java applications as well. Thus
a JMS-based logging service can be used
in a very broad context. It provides a flex-
ible solution for large, heterogeneous
enterprise computing environments.

Conclusion
A distributed logging service provides

an ideal use-case for JMS. Using JMS,
application information can be easily
logged to a persistent queue and then
processed asynchronously. Application-
specific development is pushed to the
boundaries of the log processing – time-
consuming development of fundamental
application services is avoided altogether.
JMS also provides fault tolerance and scal-
ability, so the application log can provide
highly reliable information. Since EJB 2.0
now integrates JMS into the EJB container,
global transactions and support for con-
current message processing can be provid-
ed transparently in the logging service.

chappell@progress.com

gpavlik@bluestone.com

It’s a natural and pleasant experience to start

using JMS to do
the same kinds of things

that are often done with system-level protocols

“

’’

J M S

Your Own MagazineYour Own Magazine
Do you need to differentiate yourself from your competitors?

Do you need to get closer to your customers and top prospects?

Could your customer database stand a bit of improvement?

Could your company brand and product brands benefit from a higher profile?

Would you like to work more closely with your third-party marketing partners?

Or, would you simply like to be a magazine publisher?

SYS-CON Custom Media is a new division of SYS-

CON, the world's leading publisher of Internet tech-

nology Web sites, print magazines, and journals.

SYS-CON was named America's fastest-growing,

privately held publishing company by Inc. 500 in 1999.

SYS-CON Custom Media can produce inserts, sup-

plements, or full-scale turnkey print magazines for your

company. Nothing beats your own print magazine for

sheer impact on your customers' desks... and a print

publication can also drive new prospects and business

to your Web site.

Talk to us!

We work closely with your marketing department to

produce targeted, top-notch editorial and design.We can

handle your distribution and database requirements, take

care of all production demands, and work with your mar-

keting partners to develop advertising revenue that can

subsidize your magazine.

So contact us today!So contact us today!
East of the Rockies,
Robyn Forma,
robyn@sys-con.com,
Tel: 201-802-3022

West of the Rockies,
Roger Strukhoff,
roger@sys-con.com,
Tel: 925-244-9109

AUTHORS BIO
Dave Chappell is chief

technology evangelist for
Progress Software's

SonicMQ, and coauthor of
O’Reilly’s Java

Message Service.

Greg Pavlik is a senior
architect in HP’s

application server division.

Java COM

90 MAY 2001

package util.log;
/**
* Title: ClientLog
* Description: Interface defining the logging API used by

logging clients.
* @author Greg Pavlik
* @author David Chappell
*/

public interface ClientLog
{

public void logMessage(String message) throws LogException;
}

package util.log;
import javax.jms.*;

/**
* Title: JMSClientLogImpl
* Description: Implementation of logging service logging

client API; uses JMS
* to send the application log.
* @author Greg Pavlik
* @author David Chappell
*/

public class JMSClientLogImpl implements ClientLog
{

/** queue sender for connection */
private QueueSender m_sender = null;
/** queue session for connection */
private QueueSession m_session = null;

/**
* No arg constructor for log service implementation.
* Acquire a reference to administered queue via standard
* JNDI lookups.
* @param initialContextFactory initial context factory
* @exception thrown if constructor cannot initialize queue

sender
*/

public JMSClientLogImpl(String initialContextFactory) throws
LogException

{
try
{

//acquire JMS queue reference via JNDI
java.util.Hashtable env = new java.util.Hashtable();
env.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,
initialContextFactory);
javax.naming.InitialContext context = new
javax.naming.InitialContext(env);
QueueConnectionFactory qcf = (QueueConnectionFactory)
context.lookup("QueueConnectionFactory");
QueueConnection connection = qcf.createQueueConnection();
QueueSession session = connection.createQueueSession
(false, QueueSession.AUTO_ACKNOWLEDGE);
Queue queue = (Queue)context.lookup("LogQueue");
m_sender = session.createSender(queue);

}
catch (Exception e)
{

throw new LogException(e.getMessage());
}

}

/**
* Takes an input string and pushes message on to log queue
* @param logEntry the input String
*/

public void logMessage(String logEntry) throws LogException
{

try
{

TextMessage message = m_session.createTextMessage();
message.setText(logEntry);
m_sender.send(message);

}
catch (Exception e)
{

throw new LogException(e.getMessage());
}

}
}

package util.log;
/**
* Title: ClientLogFactory
* Description: Acts as a factory maintaining implementation

of ClientLog as a singleton instance.
* @author Greg Pavlik
* @author David Chappell
*/

public class ClientLogFactory
{

/** client log implementation returned by factory */
static private ClientLog m_logImpl = null;

static
{

//hard code for example
m_logImpl = new JMSClientLogImpl("JMS Initial Context

Factory");
}

/**
* provides access to singleton instance
* @return implementation of ClientLog interface
*/

static public ClientLog instance() throws LogException
{

return m_logImpl;
}

}

package util.log;
/**
* Title: LogServiceMessageListener
* Description: Message Listener for distributed log example.

This example extracts the message text from the message
and writes it to standard err.

* @author Greg Pavlik
* @author David Chappell
*/

import javax.jms.MessageListener;
import javax.jms.Message;
import javax.jms.TextMessage;

public class LogServiceMessageListener implements MessageListener
{

/**
* Send message contents to standard error
* @param message the text message sent from
*/

public void onMessage(Message message)
{

try
{

String text = ((TextMessage)message).getText();
System.err.println(text);

}
catch(Exception e)
{

System.err.println("SYSTEM ERROR: could not process
message: " + message);

}
}

}

package util.log;
/**
* Title: LogClientTag
* Description: A tag extension for JSPs that uses the

ClientLog implementation.
* This can be used to send log messages to the JMS queue without
* writing any Java code.
* @author Greg Pavlik
* @author David Chappell
*/

import javax.servlet.jsp.tagext.TagSupport;

public class LogClientTag extends TagSupport
{

/** Client log message set by JSP engine during tag processing*/
private String m_message = null;

/** no arg constructor */
public LogClientTag()
{

;
}

/**
* After tag has been encountered, simply send text to ClientLog
*/

public int doEndTag() throws javax.servlet.jsp.JspException
{

try
{

ClientLogFactory.instance().logMessage(m_message);
return javax.servlet.jsp.tagext.Tag.SKIP_BODY;

}
catch (LogException e)
{

throw new
javax.servlet.jsp.JspException(e.getMessage());

}
}

//ATTRIBUTE ACCESSOR/MUTATORS
public void setMessage(String value)
{

m_message = value;
}

public String getMessage()
{

return m_message;
}

}

Listing 5: A tag extension for JSPs

Listing 4: A message listener that sends text to standard error on monitoring console

Listing 3: A factory class for the implementation of the ClientLog interface

Listing 2: The JMS-based implementation of the ClientLog interface

Listing 1: Interface for the logging client to send messages to a log service

Java COM

92 MAY 2001

There’s an old saying about the
weather – everyone talks about it but no
one ever does anything about it.
Fortunately, this is not true for
Enterprise Information Systems (EISs).
In fact, IBM, Sun, and a number of other
companies are doing something about it
in the Java 2 Platform, Enterprise
Edition (J2EE) with something called
the J2EE Connector Architecture (JCA).
VisualAge for Java contains the tooling
that was, in large part, the inspiration
for JCA. J2EE and JCA are not, as of this
writing, finalized and thus no applica-
tion server or development tool can

claim support for either. We’ll see, how-
ever, that VisualAge for Java’s Enterprise
Access Builder for Transactions, togeth-
er with some common design patterns,
enables us to leverage JCA in our code.

First let’s look at some of the chal-
lenges of integrating an EIS into our e-
business architecture:
• Almost all EIS vendors provide APIs

for their products. In general these are
proprietary interfaces, which may or
may not interoperate well with other
software, and they tend to be quite
complex.

• Every time an application server ven-
dor wants to support a given EIS, the
vendor has to build and maintain a
separate interface just for that EIS.

• There’s no standard process for man-
aging issues of security, transactional
integrity, or connection pooling with-
in the applications; the application
developers must reinvent these
wheels for each EIS.

What Is JCA?
Just as JDBC defines a standard API

for relational database access for Java
developers, JCA aims to do likewise for

connecting to and accessing EISs. The
JCA defines a standard architecture for
connecting the J2EE platform to EISs by
specifying a set of scalable and secure
mechanisms for integrating EISs. The
JCA also defines a Common Client
Interface (CCI) for EIS access.

The Connector Architecture
The two key concepts of the archi-

tecture are resource adapters, usually
provided by the EIS vendor, and appli-
cation servers, which the resource
adapters “plug into.” The architecture

defines contracts for transaction man-
agement, security, and connection
management. A resource adapter must
support these contracts or it won’t be
allowed to plug into a compliant appli-
cation server. This architecture allows
any number of application servers to
support a given EIS and one application
server to support many EISs (see Figure
1). The J2EE Connector Architecture
stipulates that the EIS will be the
resource manager in instances where
transactions are an issue. The architec-
ture also allows the application server
to support connection management
and connection pooling when scalabili-
ty and performance are an issue (when
are they not?).

Common Client Interface
CCI defines a common API so that

each application server can supply tool-
ing to support any and all JCA-compli-
ant EISs. Some of its features are:
• Definition of a remote function-call

interface that focuses on executing
functions on an EIS and retrieving the
results

• A simple, powerful, and extensible
API

• Consistency with various facilities
defined by the J2SE and J2EE plat-
forms

• Independence from any specific EIS

The CCI consists of classes and inter-
faces for the abstraction and manipula-
tion of connections, interactions, re-
cords, and connection metadata. You
can find these classes and interfaces in
the following packages:

Leverage JCA in your code

The J2EE
Connector Architecture

V I S U A L A G E R E P O S I T O R Y

WRITTEN BY
BRADY FLOWERS

Most companies have a large investment in legacy systems for ERP,
transaction processing, and database applications. Everyone’s talking
about how they can leverage these systems and integrate them into
their modern, multitier, e-business application architectures.

VisualAge for Java’s Enterprise Access Builder for Transactions,

together with some common
design patterns,

enables us to leverage JCA in our code

“

’’

Java COM

94 MAY 2001

V I S U A L A G E R E P O S I T O R Y

• Connection-related interfaces:
javax.resource.cci.ConnectionFactory

javax.resource.cci.Connection

javax.resource.cci.ConnectionSpec

javax.resource.cci.LocalTransaction

• Interaction-related interfaces:
javax.resource.cci.Interaction

javax.resource.cci.InteractionSpec

• Data representation–related inter-
faces:

javax.resource.cci.Record

javax.resource.cci.MappedRecord

javax.resource.cci.IndexedRecord

javax.resource.cci.RecordFactory

javax.resource.cci.Streamable

javax.resource.cci.ResultSet

java.sql.ResultSetMetaData

• Metadata-related interfaces:
javax.resource.cci.ConnectionMetaData

javax.resource.cci.ResourceAdapter

MetaData

javax.resource.cci.ResultSetInfo

• Additional classes:
javax.resource.ResourceException

javax.resource.cci.ResourceWarning

What Is CCF?
As the vendor of CICS, MQSeries,

Encina, IMS, and Host on-Demand, IBM
is a prominent EIS supplier. It worked
with Sun on the development of J2EE,
along with other vendors such as
Inprise, Oracle, BEA, Motorola, and
Sybase. While J2EE was still under devel-
opment, IBM delivered a working solu-
tion to its customers. The Common
Connector Framework (CCF) and the
Enterprise Access Builder for
Transactions (EAB) have been part of
VisualAge for Java since 1998. (In addi-
tion to the IBM EISs mentioned, the EAB
also contains connectors and tooling to
support SAP R/3 servers.)

If we examine the components of the
Common Connector Framework, we’ll
see that most of the details and nearly all
the philosophy have made the transition
from CCF to JCA. The Common
Connector Framework features all the
same constructs as CCI plus a few extra
features:
• Connection/communication specifi-

cations

• Interaction specifications
• Records and record types
• Mappers to map records to managed

business objects
• Command and navigator beans

Command and Navigator Beans
Figure 2 illustrates how the CCF com-

mand bean wraps connection, interac-
tion, and record beans to encapsulate one
transaction with the EIS. The command
provides getters and setters for the input
and output records, a possible façade for
other input and output properties, an
execute() method to begin the process-
ing, and events for the successful and
unsuccessful completion of the transac-
tion. Not shown in Figure 2 but also very
important is the ability to commit or roll
back the transaction, if applicable.

Navigator beans are simply an exten-
sion of the command beans, which can
contain other command beans and nav-
igators. These objects allow us to group
multiple EIS transactions and entire
subgroups of transactions into mean-

ingful units of work that can be commit-
ted or rolled back as one.

The command and navigator beans
have a simple, well-defined API that’s
designed to make them easy to work
with in a visual builder tool such as
VisualAge for Java’s Visual Composition
Editor. In the next article we’ll make
good use of this feature as we build a
sample transaction program.

SmartGuides
In addition to supporting Java record

structures, which is part of the CCI, the
Enterprise Access Builder for
Transactions also supplies several tools
to help automate the creation of certain
record types. CICS programs written in
COBOL generally have a communica-
tions area called a COMMAREA or their
screen is defined as BMS maps; IMS
screens are defined via MFS maps. The
Java Record Builder SmartGuide knows
how to read and parse COBOL, BMS, and
MFS source files to create input and out-
put record types and records from these
structures. In addition, the 3270 Importer
is an integrated tool that imports a 3270
terminal source and generates a record
type and a record. Figure 3 shows all the
options available in the Enterprise Access
Builder for Transactions.

The EAB and EJBs
The Enterprise Access Builder can be

used in the development of session
beans and BMP entity beans in two ways:

FIGURE 1 How architecture allows EIS/Server support

EIS

App
ServerServer

ApppApp
SSe rerrve

E sISs

FIGURE 2 The CCF Command Architecture

EAB Command

ConnectionSpec InteractionSpec

input
RecordBean

p
d

output
RecordBean

p
d

output
RecordBean

p
dCommunication

inProperty

inProperty

inProperty

and

outProperty

outProperty

outProperty

and

ccessfulEventsuuc
failureEventf ilfailure

execute

If we examine the components of the Common Connector Framework,

we’ll see that most of the details
and nearly all the philosophy

have made the transition from CCF to JCA

“

’’

Java COM

96 MAY 2001

V I S U A L A G E R E P O S I T O R Y

1. The EAB features a session bean
SmartGuide, which can be used to
create a session bean that encapsu-
lates an EAB command or navigator,
and an EAB session bean editor,
which can be used to further refine
the enterprise bean.

2. After creating a BMP entity bean in
the VisualAge EJB development envi-
ronment, the persistence methods of
the entity bean – ejbCreate(),
ejbFind(), ejbLoad(), ejbStore(), and
ejbRemove() – can be implemented
either by invoking methods on an
EAB-generated session bean, or by

directly executing EAB
commands and naviga-
tors.

The Path from CCF to JCA
The JCA specification

will be finalized in J2EE
1.3, which is expected to
be released in 2001. As of
this moment, however,
JCA and CCI are not
implemented by any
application server or EIS
vendor, and the IBM CCF
is not yet ported to JCA. So
the question becomes:
How do we write code that
works now but won’t need

to be thrown away in the immediate
future? We can take a clue from one of
the structures provided in the EAB: the
Command Pattern.

Command Pattern
Command Pattern is one of the pat-

terns discussed in the revered book
Design Patterns by Gamma, Helm,
Johnson, and Vlissides. The EAB com-
mand bean is an implementation of this
pattern. If we use the EAB’s command
bean directly, however, we may risk the
maintainability of our code in the future
should we decide to move to a different

implementation of the JCA or if the EAB
changes to fit the JCA as the specifica-
tion becomes final.

The Command Pattern is one of the
shortest and easiest to grasp patterns
in Design Patterns. Basically, a
Command should provide setXXX()
methods, execute(), and getXXX() plus
the possibility of thrown exceptions.
We would do well to define our own
Command interface, which may inher-
it from one of the existing command
interfaces or serve as a façade. That’s
exactly the course we’ll set in the next
column.

Next time we’ll build a back-end
transaction using EAB/CCF and wrap
the transaction in a custom command
to make it JCA-ready.

Resources
1. The JCA specification and information

on the CCI: http://java.sun.com/j2ee/
connector/

2. IBM documentation for the Enterprise
Access Builder for Transactions:
www7.software.ibm.com/vad.nsf/Da
ta/Document3852

3. Gamma, E., Helm, R., Johnson, R., and
Vlissides, J. (1995). Design Patterns.
Addison-Wesley.

FIGURE 3 The Enterprise Access Builder in VisualAge for Java

AUTHOR BIO
Brady Flowers is a

software IT architect with
IBM’s WebSpeed team

specializing in WebSphere,
Java, and the rest of IBM’s

suite of e-business
applications. bradenf@us.ibm.com

Java COM

98 MAY 2001

eroCode is a Web-based development
environment that allows a team to

graphically develop a Web-based database
application with minimal handwritten code.
The development environment is Web-
based and housed on zeroCode servers.
Developers build the application via the
Web interface and when complete, the
entire site is downloaded and installed on
servers in the production environment.

While developing with zeroCode, a
heavy emphasis is placed on an applica-
tion’s design. To optimize code generation
capabilities, the zeroCode environment
defines a set of design rules and guide-
lines the development team must follow.
Some examples of rules to follow include
using Java naming conventions for data-
base objects, normalizing the table
structure as much as possible, and using
foreign key constraints to identify rela-
tionships among tables.

zeroCode is designed to isolate the tiers
within an application, shown in Figure 1
from the zeroCode documentation. Users
interact with zeroCode applications
through servlets. The servlets interact with
the application objects, which in turn
interact with the database through a data-
access layer. Manipulation of data for UI
display purposes is handled via
FreeMarker, an open-source tag expan-
sion engine designed to interface HTML
and application objects.

All data to support the application is
stored in a JDBC-compliant database
(zeroCode has been tested with Oracle
8/8i and MS SQL Server). The database
design should closely follow the appli-
cation’s object model to provide the
best possible generation of compo-
nents. All data relationships must be
modeled with foreign keys to allow
zeroCode to construct relational objects
for the application. The data model is
uploaded to zeroCode, which then gen-
erates the tables, business logic compo-
nents, and default HTML views for each
database object in the schema. At this
point, the user has access to the system
and may manipulate data at a table level.

Once the schema is uploaded and the
database is in place, there are several con-
cepts and related terminology that must be
understood to develop applications with
zeroCode. The user interface data model
(UDM) is an object that relates an HTML
page to data in the database. UDMs are hier-
archical in nature and represent data accord-
ingly. An example might be a collection of
albums by a single musician. zeroCode pro-
vides basic UDMs for common actions and
data representations. Customized UDMs may

be created to perform more complex operations.
zeroCode automatically generates HTML

pages to view data in the database schema. These

P
R

O
D

U
C

T
R

E
V

I
E

W

AUTHOR BIO
Brian R. Barbash is a consultant for the Consulting Group of
Computer Sciences Corporation. He specializes in application

design and development, business and
technical analysis, and Web design.

Ampersand Corporation
700 N. Central Ave, Suite 270
Glendale, CA 91203
Phone: 818 548-9100
E-mail: info@zerocode.com
Web: www.zerocode.com

Pricing Information:
Subscription basis
$500 per concurrent designer per month
Payment plans available
Considerations for site licenses for companies with 10 or
more users

Test Environment:
Development:
Internet Explorer 5.5 running against zeroCode’s
development site
Runtime:
Windows NT 4.0 SP 5
256MB RAM
Database: Oracle 8i
Web Server:Apache 1.3.12
Servlet Engine:Allaire JRun 3.0

zeroCode
by Ampersand

Corporation
REVIEWED BY BRIAN R. BARBASH

bbarbash@csc.com

Java COM

z

Java COM

100 MAY 2001

pages are called templates and may be modified
individually to provide a customized look and feel.
Templates include HTML, JavaScript functions for
validating form input, and FreeMarker tags.
Metatemplates are the files that contain instruc-
tions for generating templates. By modifying
metatemplates, a large number of HTML pages
may be changed. For example, if a company logo
and common header were required for all pages,
the HTML can be added to the metatemplates
and the site regenerated to update all pages.

Predicates are objects that are analogous to
“where” clauses in SQL. They’re used to con-
strain data for display and are applied to nodes
within a UDM.

As mentioned earlier, all development takes
place on the zeroCode Web site and when com-
plete, the application and all tools for runtime
support are downloaded and installed on local
production boxes. The two main components to
zeroCode are the zeroCode development environ-
ment and the runtime environment. The development environment is
currently available for Linux only and was therefore not included in this
review. The runtime environment is a pure Java implementation and will
run on any supported platform. Currently, zeroCode is tested for Linux
and Windows NT with UNIX evaluations forthcoming. For this review I
created a very simple site to access a database schema and proceeded to
download the environment for deployment.

When downloaded, the site is packaged as a .tgz file, readable by
WinZip. The finished application package will include all runtime
required files (zeroCode JAR files, stylesheets, HTML files, UDM files,
etc.) in their appropriate directories. To bring the site up, the database
schema file must be executed within a local instance of Oracle to cre-

ate the database structure. Then the configuration files must be modified
to fit the runtime environment. Settings include the name, port, user, and
password settings for the local database and the paths to the root of the
zeroCode download. Finally, JRun must be configured to recognize a
servlet URL for the site. The process was relatively easy to complete and
the site was up and running locally in less than one hour. Currently,
zeroCode runtime has been tested for Linux, Solaris, and Windows NT.

The zeroCode development environment presents a powerful alternative
to developing database-enabled Web sites. As zeroCode evolves and is
enhanced further, more and more complex sites will be able to be generated
using this development platform. It’s a product that takes a significant step
toward the goal of developing applications with minimal handwritten code.

P
R

O
D

U
C

T
R

E
V

I
E

W
zeroCode by Ampersand Corporation

FIGURE 1 zeroCode technical architecture

XML Definitions
D/HTML Templates

DatabaseDatabase

Customer-owned Components
Third-Party Components

D
a
ta

 A
ccess

A
p
p
lica

tio
n

O
b
jects

AppApp
Server
pp

S

ServletsS

Free
MarkerMarker

sAAccessA
Manager

WebW
ServerS
with
Java

VMV

User
Access

Java COM

102 MAY 2001

Since Client Company downloads its
archives through the Internet:
1. It wants to be sure downloaded

archives can be sent only by its identi-
fied providers.

2. It wants to be aware of the security
requirements of its providers. For
instance, does a downloaded archive
need to write or remove files?

• • •
The first article in this series (JDJ,

Vol. 6, issue 1) described how to
download servlets and JSP archives
like applets. Part 2 (JDJ, Vol. 6, issue 2)
showed how to administrate these
presentation archives remotely, in
particular to force a refresh at a
scheduled time. I also indicated how
to handle special cases, such as
resources.

The last issue to address is security.
Let’s consider the situation presented
above, illustrated in Figure 1.

The solution I present to address
these requirements is to enhance the
archive-downloading package to host

archives in sandboxes in the way that
browsers host applets. I used the stan-
dard Java 2 security described in the Java
Security Architecture document down-
loadable from http://java.sun.com/
products/jdk/1.2/docs/guide/securi-
ty/spec/security-spec.doc.html.

Java 2 Security
Figure 2 depicts Java 2 security com-

ponents. The hub component is the
Security Manager. Its purpose is to deter-
mine whether particular operations
should be permitted or denied. The
Security Manager is implemented by
SecurityManager class and subclasses,
which contain methods with names that
begin with the word check. These meth-
ods are called by various methods in the
Java libraries, including Java API, before

those methods perform potentially sen-
sitive operations. The invocation of such
a check method typically looks like this:

SecurityManager security =

System.getSecurityManager();

if (security != null) {

security.checkXXX(argument, . . .

); }

There is at most one active
SecurityManager instance that a
method retrieves with System.getSecu-
rityManager(). If getSecurityManager()
returns null, the method doesn’t check
and is slightly faster. This is often the
case in Java application servers.
SecurityManager check methods rely on
another component, the Access
Controller, and call AccessControl-
ler.checkPermission(perm).

The AccessController class manages
Java 2 security, whereas the Security
Manager that already existed in Java 1
remains mainly for upward compatibility.

A fundamental concept of Java 2
security is the protection domain. A
domain encloses a set of classes whose
instances are granted the same set of
permissions. Permissions here are
instances of Permission subclasses.
They represent access to a system
resource. For instance, the permission
to read a file C:\TEMP\FileAccess.txt
can be produced by:

new

java.io.FilePermission("C:/TEMP/

FileAccess.txt", "read").

As you could guess, a protection
domain is implemented by a Pro-
tectionDomain class, whose constructor

Download Web apps without
compromising your security

A Practical Solution for the
Deployment of JavaServer Pages

S E C U R I T Y

WRITTEN BY
ALEXIS GRANDEMANGE

A Client Company implements an archive-downloading pack-
age. It downloads presentation archives from its providers, Server
Companies 1 and 2. Server Company 1 archive includes Enterprise
JavaBean client code; Server Company 2 includes Java Message
Service (JMS) client code.The archives are either JAR files or Web
Archive (WAR) files.

Part 3 of 3

A better solution would be to declare somewhere that

code coming from a given source
with a given signature

is granted a set of permissions

“

’’

Java COM

104 MAY 2001

S E C U R I T Y

is ProtectionDomain(CodeSource code-
source, PermissionCollection permis-
sions). Let’s start with the simplest
parameter, permissions. This is simply
the collection of the permissions the
protection domain will have. The
parameter of codesource is slightly more
complex. It represents the origin of the
protection domain classes and its cre-
dentials. Codesource is characterized by
a set of public keys and a codebase URL,
and its constructor is CodeSource(URL
url, Certificate[] certs).

I need to give a short explanation of
the credential issue here. To be sure a
piece of code is coming from a source, we
must check whether it contains some-
thing only the source can generate. The
most common and standard mechanism
is asymmetric keys. The source encrypts a
signature with a private key and the desti-
nation uses a corresponding public key to
decrypt and check that the signature is
correct. It retrieves the public key from a
certificate, which certifies that the key
belongs to the source. As only the source
has the private key, it is the only entity
able to generate a signature that can be
decrypted with the public key. It is the
solution implemented in Java, and
Certificate is a class wrapping a certifi-
cate.

A last point to consider: we could
build our PermissionCollection pro-
grammatically, but it wouldn’t be flexi-

ble and convenient. A better solution
would be to declare somewhere that
code coming from a given source with a
given signature is granted a set of per-
missions. This is the purpose of the poli-
cies, implemented as Policy subclasses.
A policy is a way to get a Per-
missionCollection, given a CodeSource,
based on a configuration file or data-
base. Sun provides a default policy
implementation, PolicyFile, that relies
on configuration files.

Java security is comprehensive and
well documented. Accordingly, I used it
to support sandboxes inside a Java serv-
er in a way that was as close as possible
to the applet distribution model.

Use
A Server Company generates a key

pair and stores it in a key store, using the
keytool command as indicated in
Listing 1. (Note: All listings appear on the
Web at www.javadevelopersjournal.
com.) Here it creates a key pair whose
alias is hello. It’s protected by a pass-
word helloPswd and stored in a key store
named D:\JSPservlet\keystore. The
Server Company then signs its archive
with “jarsigner,” for instance:

jarsigner -keystore

D:\JSPservlet\keystore -storepass

keystorePswd -keypass helloPswd

helloMisc.jar hello

to sign a helloMisc.jar archive, using its
hello key pair.

The Server Company also describes
which authorizations the archive needs to
run properly in a standard policy file. For
instance, it describes the helloMisc.jar
security requirement in Listing 2. This
policy states that the archive classes, rep-
resented here by their codesource, require
all permissions. It also states that archive
classes must be signed with the public key
defined in key store and aliased by hello.

The Client Company administrator
imports the Server Company certificate
into its key store. It can verify the
required permissions in the policy file
and check the certificate with the com-
mands in Listing 3. If it agrees on per-
missions and certificates, it can add
them to its environment without restart-
ing its Java server because the archive-
downloading package finds the policy
files and key stores in the cache directo-
ry specified by the JSPservlet deploy-
ment descriptor. More precisely, the
package first looks for an archive.policy
file or, if that doesn’t exist, for a java.pol-
icy file. Therefore, the administrator can
choose to merge policy files of different
providers or to keep them separate.

Once the administrator has complet-
ed this task, it or the Server Company
can initiate a first download and users
can access the Web application.

Implementation
Let’s start with a reminder of the tool

structure (see Figure 3).
JSPservlet, a special servlet, handles

HTTP requests toward a Web applica-
tion and forwards them to target servlets
and JSPs with the help of a set of objects:
1. JSPhandler objects manage Web

applications and maintain a
ClassEntry map. They also cache ini-
tialization parameters.

2. ClassEntry objects manage archives
and maintain a cache of target
objects.

3. JSPloader objects are target servlets
class loaders and maintain a cache of
target classes.

The security support is implemented
in the class loader, JSPloader.

It implies, however, a minor modifi-
cation of JSPhandler to support another
parameter, allPermissionPolicy. This
parameter has two functions: first, if
present, it means that the archive class-
es must run in a sandbox; second, it
gives the name of a default policy file
that’s used if the Java server doesn’t set a
Security Manager, which is often the
case.

Setting a Security Manager is a JVM-
wide action. As we saw before, if it isn’t
set, then it can’t be called by Java API
and hence can’t get the opportunity to
invoke the Access Controller and to
enforce a policy. So we need to set a
Security Manager if no one is active, but
before we have to set a policy. Otherwise
the Java server will get an Ac-
cessControlException, because Java 2
security doesn’t have a built-in concept
that local code is trusted. Therefore we
need to grant our Java server permis-

FIGURE 1 Sandbox need

Client company

Server company 2

Server company 1
download

download

.war

.war

HTTP server

HTTP server

Java Application
server

MOM

EJB
.war
copy

.war
copy

Java server

Sandbox

Appli

Sandbox

Appli

1

2
1

2Browser

FIGURE 2 Java 2 security

Program
Java API

Security Manager

Access Controller

Java COM

106 MAY 2001

S E C U R I T Y

sions such as the right to read local
disks. Listing 4 is the simplest
allPermissionPolicy file we can define. It
grants all permissions to all classes,
which is the same behavior as running
without a Security Manager.

First let’s look at the constructor in
Listing 5. If allPermissionPolicy property
isn’t set, it loads the archive classes and
resources and returns without attempt-
ing to apply a security. Otherwise, if a
Security Manager isn’t set, it creates a
new policy with new sun.secur-
ity.provider.PolicyFile(). It must be set
before a java.security.policy system
property that PolicyFile constructor
uses to locate the policy file. Next the
constructor sets this policy as the cur-
rent policy and creates the security
manager.

The constructor then creates a base
URL, which is used later in the classes
definition. We’ll examine this point
shortly. For the moment, simply note
that the base URL is made up of the
archive download location and the
archive name. It’s the codeBase the
administrator specifies in the archive
policy file, as you can see in Listing 2.

The next step of the constructor con-
sists of loading the archive policy file
from either archive.policy or java.policy,

as described above. It creates a policy
but doesn’t set it as the current policy:
the Access Controller continues to apply
allPermissionPolicy.

Eventually the constructor builds
classes through the invocation of
loadClassDataFS(). This method gets a
JarInputStream on a local copy of the
remote archive and passes it to a
parseStream() method shown in Listing
6. parseStream(), which defines classes
and implements the sandbox, relies on
the ability to define a class inside a
Protection Domain. If classes inside the
domain are trying to do something the
domain isn’t allowed to do, the Access
Controller throws a java.security.Access
ControlException.

Let’s look at a back trace (see Figure
4). Here I tried to run a Test-
Servlet.FileAccess servlet from an
unsigned archive. TestServlet.FileAccess
invoked File.exists(). File.exists()
invoked SecurityManager.checkRead(),
which invoked AccessController.Check-
Permission(). AccessController.Check
Permission() found that the Protection
domain didn’t have the needed permis-
sion and threw a java.security.Access
ControlException.

The interesting part of parseStream()
starts when it has identified a class. If
allPermissionPolicy property isn’t set, no
sandbox is enforced and parseStream()
defines the class with defineClass(name,
buf, 0, buf.length). Otherwise it extracts
the class certificates with Jar-
Entry.getCertificates(). If it finds no cer-
tificate, it defines the class in a
protectionDomain() domain. Though
this domain has no certificates, it does-
n’t necessarily mean it has no permis-
sions. If the domain codesource was
granted permissions without a signature
(SignedBy parameter), such as in the
Listing 7 policy file, policy.getPer-
missions() returns these permissions.

To handle a situation in which
JarEntry.getCertificates() found certifi-
cates, parseStream() maintains a
protectionDomains HashMap whose
keys are certificates arrays and values
are Protection Domains. Thanks to this
HashMap, parseStream() uses only one
Protection Domain per certificate array.
It enumerates protectionDomains and
checks to see if a domain already has the
same certificate array. If it does,
parseStream() defines the class in this
domain. Otherwise it creates a new
Protection Domain with the permis-
sions returned by policy.getPer-
missions(), defines the class in this
domain, and records the new domain in
protectionDomains. The new Protection
Domain can be granted permissions

because a certificate matched a signa-
ture as seen in the Listing 2 policy file.

Callback Issue
When the servlet container invokes

JSPservlet, which invokes the target
servlet, the solution we presented above
is enough. However, we also have to han-
dle the case when the target servlet asks
for a resource or a class, or calls back
JSPservlet for another servlet using
RequestDispatcher.include() or Request-
Dispatcher.forward().

The callback is likely to fail in a dis-
concerting way. If you call servlet A first,
you get an AccessControlException in a
class loader; if you call it again, you get
AccessControlException in JSPservlet. If
you invoke servlet B before servlet A,
however, it works fine.

This problem happens because the
target servlet code calls a class –
JSPservlet, for example – requiring priv-
ileges it doesn’t have. As we saw above,
AccessController.CheckPermission is
invoked. It checks to see that all code
traversed by the execution thread up to
its call has permission for that access.
When the target servlet calls back
JSPservlet, a piece of code – the target
servlet itself – doesn’t have the proper
permission and AccessController
throws an AccessControlException. The
problem occurs randomly because,
depending on the invocation order,
resources have or have not already been
accessed.

To address this issue, we need to use
“privileged” code (see Figure 5). Let’s
refine the explanation above. Access-
Controller checks whether all code tra-
versed by the execution thread has per-
mission for that access unless some
code on the thread has been marked
privileged. If a caller whose code is
granted a permission is marked privi-
leged and all code invoked by this caller
also has this permission, then
AccessController allows the access.

We granted allPermissionPolicy per-
missions to the tool code, so the only
thing we need to do is mark the code
privileged when it can be called by the
target servlets at resource retrieval, class
retrieval, and servlet handling. To do this
we must use AccessController.do-
Privileged. This method is thoroughly
described in the JDK doc.

Listing 8 shows how I mark servlet
handling as protected. As I use an
anonymous inner class, I must declare
local variables used in the privileged
block as final. I also use Privi-
legedExceptionAction interface to han-
dle exceptions raised in the privileged
block.

FIGURE 3 Tool class diagram

FIGURE 4 AccessControlException

Java COM

108 MAY 2001

S E C U R I T Y

Certificate Authority Considerations
Let’s assume you are the server

company administrator. You run the
Listing 1 command to populate your
key store with a self-signed certifi-
cate, and a private-key JARsigner
needs to sign the archive. You
should:
1. Never distribute this key store, as it

contains the private key allowing
signing archives.

2. Keep the key store in a safe location. If
you lose it, you’ll never be able to sign
archives again, and if someone with
malicious intent reads it, your securi-
ty will be compromised.

Let’s assume your cus-
tomers accept only certifi-
cates issued by a given
Certificate Authority (CA).
You need to get a certificate
that is issued by this CA and
that wraps your public key,
whose corresponding private
key is known only to you. To
do it, first build a PKCS#10
certificate request with:

keytool -certreq -alias

alias -keystore keystore.

PKCS stands for Public-
Key Cryptography Standards,

which are RSA Laboratories specifica-
tions. PKCS#10 specifies the Certificate
Request (CR) standard. Once you have
your CR, you query a certificate to the
CA, typically through an HTML form
that prompts you for your CR. You then
import this certificate in your key store
with the command:

keytool -import -file

certificate_issued_by_CA -alias

alias -keystore keystore.

You also send the certificate to your
customers, who import it in their key
stores using the same keytool com-

mand. It’s important to note
the difference between your
and your customers’ key
stores. Yours contains both the
certificate and the private key.
You can sign archives. Theirs
contains only the certificate.
They can check only archive
signatures.

Now consider the distribu-
tion of a signed archive.
Assume that many customers
have anonymously down-
loaded a signed archive that
someone published on a
repository. They followed
instructions, installed the cer-
tificate in their key store, and
put the archive in production.
Later someone revokes the
certificate. If a CRL checking
mechanism is embedded in
the solution, it’s possible to
disable the archive classes
without impacting other Web
applications or needing to
stop the Java server.

We can implement this
mechanism using freely down-
loadable material because:
1. Revoked certificates are

stored in Certificate
Revocation Lists (CRL), gen-

erally accessible through Lightweight
Directory Access Protocol (LDAP).

2. LDAP repositories and keytool use
X509 certificates and CRL.

3. Java 2 provides helper objects for
X509 certificates and CRL.

4. JNDI supports LDAP.

Listing 9 presents a CRLchecker
class, which checks CRLs. Its core
method, refresh(), gets an initial
Directory Context, providing parame-
ters like the LDAP URL, where the CRL is
defined; the principal; and the password
to use to connect to the CA directory. It
then retrieves the CRL in a cer-
tificateRevocationList context attri-
bute, creates a Java X509CRL object, and
populates it with the attribute value.

The refresh() method is invoked by
the constructor and by getNext-
Update(), whose purpose is first to
refresh the repository periodically and
second to return the next scheduled
CRL update. CRL update can become
complicated and expensive, especially
if many CAs are involved. Most revoca-
tions aren’t critical. An employee certifi-
cate, for example, can be revoked when
the employee moves to another depart-
ment. It’s therefore often practical to
update the CRL only once a day or once
a week. As it’s also expensive for an
application to poll the CRL repository,
CRL standard specifies a next update
field containing a date the application
can use as a hint to poll the repository.

The last CRLchecker method,
check(), uses CRL getRevokedCertificate
to learn whether a certificate has been
revoked using its serial number. It
throws an exception if this is the case.

Summary
The Java 2 framework has the flexi-

bility required to implement sandboxes
in an application server, still relying on
the Java 2 policy files, keytool, and
JARsigner. It also provides classes to
check on whether the credentials you
use are still valid. The major difficulty
in this area is that it encompasses tradi-
tionally separate spheres of knowledge.

Regarding the requirement of sup-
porting archives that are downloaded like
applets, we see that this method clearly
enhances its area of application. You can
select Web applications on the Web and
download them in your application
servers, local or remote, without compro-
mising your security. Readers can go to
http://pagebox.net/ASversion.hxm for
sources, documentation, and binaries for
Tomcat and Resin.

FIGURE 5 Privileged code

Ex
ec

ut
io

n
st

ac
k

JSPservlet
code

target
code

JSPservlet
code

Servlet
container

code

No
permission

Permission

Permission

Permission

AccessControlA C t l
Exceptionpt o

Without
privileged code

JSPservlet
code

target
code

JSPservlet
code

Servlet
container

code

No
permission

Permission

Permission

Permission

With
privileged code

doPrivileged

AUTHOR BIO
Alexis Grandemange is an

architect and system
designer. A Java

programmer since 1996
with a background in

C++ and COM, his main
interest is J2EE with a

focus on design,
optimization, and

performance issues.

alexis.grandemange@pagebox.net

Java COM

112 MAY 2001

Options are available for implement-
ing whole new classes of applications
with embedded devices. Development
engineers must judge these options
carefully to accommodate possible
resource constraints and emerging stan-
dards and specifications.

Development Issues
As smart devices become more

capable, it’s becoming increasingly
important to adhere to industry-orient-
ed standards and specifications while
avoiding the task of building and sup-
porting basic components as part of
the overall project. The issue is one of
focus. If development engineers are
mired in trying to complete the low-
level facilities of a platform, they could
run out of time and resources when it’s
finally time to focus on project-specific
components.

When working with embedded Java
technology, developers get a head start
toward project conformity and shorter
time-to-market thanks to the well-
defined and well-known base Java class
libraries. When developers target embed-
ded platforms, these libraries can be cho-
sen with different configurations, consid-
erably reducing the size of Java applica-
tions. This impacts both the number of
classes and methods included in libraries,
and the amount of code needed to imple-
ment a method. For example, when a
small library configuration without secu-
rity support is selected, the java.security
classes are eliminated, as well as the inter-
nal references and manipulation of secu-
rity-related data within other classes
throughout the library.

Several Java Community Process
Expert Groups are now working on
“Micro Edition”–related class library
configurations. Vendors are providing
different approaches to implementing
configurations, including Java compati-
ble libraries that adhere to JCP specifica-
tions and other libraries that can be
used to meet special customer require-
ments. Both types of implementations
are available in IBM’s VisualAge Micro
Edition tools and runtime components.

“Personal configuration” compo-
nents add several additional libraries to
those found in the base Java class
libraries. For example, components for
the following use are included:
• Windows-based user interfaces (AWT

and SWT technology)
• Image map-based user interfaces

(MicroView model/event/view-based
technology)

• Relational databases (with JavaSQL
parts that interface with embedded
databases like DB2/Everyplace)

• Remote Method Invocation (CORBA
RMI technology)

Additional components are available
to provide access to cross-industry and
industry-specific services, for example:
• Transaction messaging (with prod-

ucts like MQSeries Everyplace)
• Component bundle management

(with OSGi-compliant components)
• Automotive bus interfaces (compati-

ble with MOST, CAN, and IEEE-1850
protocols)

• GPS and cellular phone control inter-
faces

• Home Internet gateways

The OSGi bundle management tech-
nology is of particular interest (see
www.osgi.org). Using tools that package
and identify bundles of components
with appropriate descriptive data, bun-
dle management works with a virtual
machine and bundle servers to provide
bundle delivery and hot-code activation
for maintaining applications. This can
be used to add and remove the features
of an offering as well as update data and
replace code. Bundle management can
be completely automated, allowing a
system to be designed with the mini-
mum usage of space on a device. For
example, a product-diagnostic package
could deliver in-depth analysis compo-
nents upon recognition of a given error
code.

Sharing the Development Workload
Many developers considering perva-

sive solutions will turn to partners to cre-
ate and deploy the portions of the sys-
tem that reside on embedded devices.
Object-oriented Java and the use of vir-
tual machines provide several advan-
tages for fast project development,
reduced time-to-market, and ongoing
product maintenance and update.
Thanks to the relative portability of com-
ponents written in Java, it’s possible to
reuse existing logic from earlier projects
and do much of the development in a
cross-platform environment.

An embedded device is equally adept
at running both client and server com-
ponents. Deeply embedded devices may
not even have a user interface, respond-
ing instead to requests from other
devices in the network that gather infor-

Effective Application Deployment with
Embedded Java Technology

WRITTEN BY
MARC R. ERICKSON

Connectivity changes everything, especially with embedded
computing technology. Since we’re entering a world in which
things will link and think, it’s clear that many new projects will
begin to incorporate more advanced and sometimes complex
technology.

E M B E D D E D J A V A

A significant advantage for systems
designers and developers

Java COM

114 MAY 2001

mation and render the interface to the
user. Much of the advantage of pervasive
computing solutions comes from com-
pletely automating activities, with
servers communicating directly with
smart connected devices.

In some cases an experienced
embedded developer will have access to
major program assets designed in direct
executing languages such as Assembler,
C, and C++. These are usually specific to
platform CPU architectures and RTOS
environments. Examples include speech
recognition software, specialized device
drivers, and existing applications that
need to be adapted for pervasive system
integration. The embedded Java envi-
ronment makes the Java Native
Interface (JNI) available for this work. In
implementations, such as IBM’s J9 virtu-
al machine, special attention has been
paid to making this interface compact
and fast.

With the use of middleware and the
ability to reuse existing logic through
JNI, the elements of an end-to-end per-
vasive computing solution can be incor-
porated quickly, improving time-to-
market. While embedded platforms are
not personal computers (lacking the
PC’s uniform approach to device attach-
ment and large resource pools), power-
ful connected-device solutions can be

constructed and maintained. Today’s
embedded platforms and processors are
achieving remarkable power while using
space efficiently, reducing heat genera-
tion, and conserving power – often
enabling battery-operated mobile use.

Each embedded device platform is
unique. In many cases the connected
device will be deployed with custom-
engineered hardware. Designers can
select from a broad range of processors,
including 32-bit PowerPC, X86, Pen-
tium, SuperH, ARM, DragonBall, and
MIPS. Clearly, the improved portability
of Java makes a difference in reuse on
embedded platforms.

Embedded software is usually devel-
oped using personal computer–based
developer workstations (VisualAge
Micro Edition tools run on both
Windows and Linux platforms), and
functional testing can be done on the
same workstation using a Windows or
Linux version of the J9 virtual machine.
Cross-platform development is consis-
tent because IBM’s J9 VM is generated
from the same source for all target plat-
forms, including the one supplied for
use on developer workstations.

The actual device hardware does
change some aspects of the execution
environment. For example, on a device
that doesn’t have floating point math

hardware, the VM and RTOS
will emulate these facilities.
Obviously, applications will
run more slowly in emulation.
There are other considera-
tions as special devices are
supported. Flash memory (for
file system simulation and
direct execution memory),
graphic user interface layers,
and communication inter-
faces may have different char-
acteristics on different plat-
forms.

Getting Started
During early project develop-

ment, it’s often wise to include a
reference platform that integrates
the actual target-device processor
and several related devices. This
allows the application to be tested
and tuned on the processor and
the devices that will be used in the
deployment of the actual project.

In many cases the vendors
of embedded Java and RTOS
technology will perform this
integration on a range of stan-
dard reference platforms.
Offerings that include services
and reference boards are avail-
able from vendors such as

QSSL (www.qssl.com), Motorola (www.
motorola.com/mobileGT), MontaVista
(www.mvista.com), and IBM’s Object
Technology International, Inc. (www.
embedded.oti.com). These offerings help
developers quickly start their projects
and focus on application instead of inte-
gration issues.

Embedded platforms usually have
limited resources available to applica-
tion programs. Beyond applications that
occupy about 500KB, Java byte code
technology is actually more compact
than raw machine language. By combin-
ing compact and well-engineered base
Java class libraries, middleware compo-
nents, and adaptive compilation tech-
niques (Just in Time [JIT] and Ahead of
Time [AOT]), it’s possible to create more
compact and efficient applications in
the Java language.

Embedded RTOS components, the
virtual machine, Java class libraries, and
extended components are often config-
urable. This allows components on a
platform to be tuned for efficient mem-
ory utilization and fast execution. IBM’s
SmartLinker technology even allows the
automatic elimination of unreferenced
classes from the base Java class libraries.
The J9 VM includes “plug-in” technology
for features such as dynamic loading,
debugging, JIT, and analyzers.

Deployment Issues
Clearly, it’ll be necessary to provide

scalable server support for pervasive
solutions. Existing networks and servers
may not be able to handle the workload
of thousands to millions of devices. For
this reason, an early phase of project
design must consider the architecture
and deployment hierarchy of the ongo-
ing processing demand of devices and
the periodic maintenance requirements
of bundle management technology.

Java technology is ideal for this use
thanks to support for servlet and applet
program structures. Advanced tech-
niques that automate server workload
distribution have already been tested
and deployed in products such as IBM’s
WebSphere servers. For example, work-
loads of millions of interactions per day
were handled efficiently during IBM’s
support of the Web sites for the Olympic
Games in Nagano and Sydney.

After product deployment, bundle
management involves the selection of
appropriate components from those
available on bundle servers, and the
delivery and activation of those compo-
nents on embedded-device platforms.

Often network hierarchy will include
high-capacity devices close to the
embedded platform that can be used to

AUTHOR BIO
Marc R. Erickson is a
project manager for

Object Technology
International, a subsidiary

of IBM. He holds a
degree in data systems

management from
Southern Illinois University.

E M B E D D E D J A V A

stage and store bundles. Examples include
the Telematics computer that provides the
user interface, mobile interconnection, and
data storage resources on a vehicle, and the
Internet gateway processor that will be part
of home automation networks. These designs
enable developers to reduce the component
size on deeply embedded devices. For exam-
ple, connection security facilities may only be
needed at the point in which a vehicle or
house attach to the external Internet, since
the network inside a house or within a vehicle
is protected by physical access control.

Keeping Up with Changes
The task of maintaining components for

embedded devices involves several distinct
steps. First, a deeply embedded device must
determine where its bundle server is located on
a network. This is done using service discovery
protocols. There are now about 23 competing
implementations of service discovery compo-
nents. One of the most interesting is the
“Salutation” protocol, since it’s robust and open.

Bundle management allows developers
to work with connected devices after a prod-
uct is in customer hands. It usually can
accomplish this without the inconvenience
of returning a product to a service center.
The OSGi specification for bundle manage-
ment defines how metadata is stored and
used to identify appropriate bundles for a
device. This is based upon device and plat-
form architecture and related component
release levels. The selection is based upon a
secure exchange of authentication informa-
tion, which is used to authorize and select
the appropriate bundles for a device. More
details are available at OSGi’s Web site,
www.osgi.org.

When a bundle has been delivered to a
device, it’s best to avoid interrupting the
user. When a virtual machine–based tech-
nology is used, it’s possible to suspend a
class’s execution and then hot-code replace
the component, restarting it at the interrupt-
ed method. With careful design, the user
need not even be aware of the product
upgrade or maintenance activity.

Conclusion
Several important extensions of embedded

Java have recently become available to perva-
sive solution developers. Since the environment
of connected embedded devices is quite differ-
ent from the personal computer and server
environments that many systems engineers are
familiar with, it’s wise to consider working with
specialists familiar with embedded software
design and integration. Java offers a significant
advantage to systems designers and developers
with its well-known base class libraries, config-
urable components, bundle management, and
advanced middleware options.

mre@us.ibm.com

MAY 2001 115

Java COM

Java COM

116 MAY 2001

Java COMJava COM

Database Programming with JDBC and Java was origi-
nally published four years ago and is now in its second revi-
sion. Significantly improved over the first edition, the book is
targeted toward those who want ideas on how database pro-
gramming works with Java. This latest edition also covers
advanced topics such as serialization, persistence, and secu-
rity.

A growing trend popular with book publishers is to incor-
porate Javadoc printouts of the Java APIs into new books –
even though you can download them for free. This practice
allows publishers to command high prices for their
books…and make them look larger. This book is no excep-
tion. It totals 330 pages, with about 217 pages of actual con-
tent. One third of this book is stuff you can get free.

In writing this review I compared the information in the
book to the Sun JDBC tutorial. The title and the content def-
initely don’t match. The book discusses the use of RMI
(Remote Method Invocation), EJB (Enterprise JavaBeans)
containers, and JNDI (Java Naming and Directory
Interface). It opens with a brief overview of ANSI standard
SQL, and is written primarily for developers who’ve never
worked with a relational database before. The next chapters
deal more with working with databases than with JDBC
itself.

Chapters 3 and 4, which discuss JDBC briefly, cover typi-
cal programming scenarios such as working with stored pro-
cedures, batch processing, updatable result sets, and
advanced data types. The JDBC 2.0 specification now recom-
mends a standard way of dealing with connection pooling. In
the past, individual developers addressed this mainly with
reference to the application server you were deploying.
Chapter 5 contains just six pages of text on the JDBC option-
al package that contains this functionality.

I thought Chapter 7, which covers architecture and design
patterns, was good. Except for the same stereotypical exam-
ple of how an applet and Swing use the model/view pattern,
it provided some useful information. If you’re not familiar
with design patterns, I recommend Design Patterns: Elements
of Reusable Object-Oriented Software by Erich Gamma et al.
(Addison-Wesley).

Chapter 8, on distributed component models, covers
security, transactions, lookup, searches, and entity relation-
ships. The chapter contains some useful code examples for

generating unique sequence numbers, generic facade (a
type of pattern), and implementing collections. Chapter 9 is
about persistence and provides solid examples of a frame-
work that is very useful in high-throughput database appli-
cations.

Chapter 10 covers the design of a UI that interfaces with
business objects. Today 99% of applications developed in
Java use HTML for the interface. The examples in this chap-
ter use Swing and don’t address any concerns of developers
whose interface is HTML. I did learn some tips about Swing
from this chapter – they’d be useful in pursuing the Sun cer-
tification exam – but otherwise it didn’t provide any insight
into how to develop a typical Web application.

The book doesn’t provide many opportunities to learn
anything other than what you could figure out for yourself
from the Sun JDBC tutorial and reference. The publisher,
O’Reilly, is known for delivering high quality, but this book
fails to live up to the standard I’ve come to expect as a buyer
of their books. I recommend you save your money and buy a
good J2EE book.

jmcgovern@enherent.com
AUTHOR BIO

James McGovern, coauthor of several Java-related books, is a senior technical architect for Enherent Corporation in their software development
center in Windsor, Connecticut. His focus is on strategy and architecture for high-profile e-business Web sites.

DATABASE PROGRAMMING WITH JDBC AND JAVA

BY GEORGE REESE

PUBLISHED BY O’REILLY & ASSOCIATESSome Good New Features,
But Not Up to Expectations

B O O K R E V I E W

REVIEWED BY JAMES MCGOVERN

117MAY 2001

Java COM

JDJ ADVERTISER INDEX
ADVERTISER URL PHONE PAGE

Appeal Virtual Machines www.jrockit.com 46 (0) 8 50630900 55
BEA www.bea.com 800.817.4BEA 4

Borland www.borland.com 800-632-2864 49
Brokat www.brokat.com 408-275-6900 19

Cape Clear www.capeclear.com/download 866-CAPE226 71
Career Opportunities Section 201-802-3028 125

ComponentSource www.componentsource.com/java 888-850-9911 13
Compoze Software www.compoze.com 866-COMPOZE 101
Corda Technologies www.corda.com 801-805-9400 77

Dynamic Buyer Incorporated www.dynamicbuyer.com 845-620-9800 113
Elixir Technology www.elixirtech.com/download 65 532-4300 89

Esmertec www.esmertec.com 877-751-3420 53
Fiorano www.fiorano.com 800-663-3621 99

Flashline, Inc. www.flashline.com 800-259-1961 79
FuegoTech www.fuegotech.com 800-355-7602 23

Hit Software www.hitsw.com 408-345-4001 81
HostPro www.hostpro.com 877-467-8464 17

IAM Consulting www.iamx.com 212-580-2700 105
ILOG www.ilog.com/jdj 800 FOR ILOG 37

Informix www.cloudscape.com/freedev 888.59.JAVA1 31
Infragistics, Inc. www.infragistics.com 800-231-8588 14-15

INT www.int.com 713-975-7434 22
IntraNet Solutions www.intranetsolutions.com 27

IONA www.iona.com 781-902-8000 67
JavaEdge Conference & Expo www.sys-con.com/javaedge 201-802-3069 110-111

JavaOne 2001 http://java.sun.com/javaone/ 103
JDJStore www.jdjstore.com 888-303-JAVA 119, 123

Jinfonet Software www.jinfonet.com 301-990-6330 51
JustComputerJobs www.justjavajobs.com 877-905-NERD 16

Leapnet www.leapnet.com (312) 528-2400 115
LOOX Software, Inc. www.loox.com 800-684-LOOX 61

Macromedia www.macromedia.com 888-939-2545 33
NetDive www.netdive.com 415-981-4546 109

New Atlanta Communications www.servletexec.com 678-366-3211 83
No Magic www.magicdraw.com 303-914-8074 7

Northwoods Software Corporation www.nwoods.com 800-226-4662 70
Parasoft www.parasoft.com/jdj4 888-305-0041 69
Pingtel www.pingtel.com/javachallenge 39
Pramati www.pramati.com 877-PRAMATI 93

PreEmptive Solutions www.preemptive.com 800-996-4556 85
Programix www.jthreadkit.com 48

Progress Software http://www.sonicmq.com/jdj501.htm 800-989-3773 2
ProSyst www.prosyst.com 866-PROSYST 75

Quadbase www.quadbase.com 408-982-0835 54
QuickStream Software www.quickstream.com 888-769-9898 96

Rational Software www.rational.com/jdj2 800-728-1212 41
RSA Security www.rsasecurity.com/go/paint 866-432-7233 25

Sandia National Laboratory http://herzberg.ca.sandia.gov/jess 20
Segue Software, Inc. www.segue.com 800-287-1329 47

SilverStream www.silverstream.com 800-465-5680 35
Sitraka Software www.sitraka.com/greatapp/jdj 888-361-3264 93
Sitraka Software www.sitraka.com/j2ee-jdj 888-361-3264 21
Sitraka Software www.sitraka.com/serverchart/jdj 888-361-3264 128
Sitraka Software www.sitraka.com/promise/jdj 888-361-3264 63

Softwired www.softwired-inc.com 41-14452370 73, 97
Sun Microsystems www.sun.com/service/suned/training 800-422-8020 57

Sybase www.sybase.com 800-8-SYBASE 43
SYS-CON Media Reprints www.sys-con.com 201-802-3024 121

Talarian www.talarian.com/jms 650-965-8050 11
Tidestone Technologies www.tidestone.com 800-884-8665 59

Togethersoft Corporation www.togethersoft.com 919-833-5550 6
TopCoder www.topcoder.com 866-TOPCODE 29

Unify Corporation www.unifywave.com/jdj 800-GO UNIFY 91
Valtech www.valtech.com 888 240 6028 45

Verge Technologies Group www.verge.com 107
VM Gear www.vmgear.com 888-655-0055 87
WebGain www.webgain.com 877-WEBGAIN 127
Zero G www.ZeroG.com/installs 415-512-7771 3

Java COM

118 MAY 2001

Sims Computing Releases
Flux 2.1
(Billings, MT) – Sims Computing
has announced the release of
Flux, the Enterprise Job
Scheduler, version 2.1. The new

version
remains

lightweight yet has several new
features such as queuing,
scalability, holiday calendars,
and an audit trail.

Flux is application server and
database independent.
www.simscomputing.com

Kada Systems Offers Java
Apps for Palm OS
(Andover, MA) – Kada Systems, a
leading provider of solutions that
enable Java applications for
mobile e-business, has intro-

duced the Kada
Mobile Platform

for the Palm OS, reportedly the
industry’s smallest, fastest, most
complete and easily ported Java
application platform for mobile
devices.

Kada Mobile, which is half the
size of any competing, full-func-
tion Java Virtual Machine, offers
the only just-in-time compiler for

handheld devices. It includes a full
implementation of the Java APIs,
and supports standard develop-
ment tools such as Visual Café,
Forte, PowerJ, and Code Warrior.
www.kadasystems.com

INT Upgrades Java 3D
Technology

J/View3DPro 2.0 is now
available from Interactive
Network Technologies, Inc. (INT).
A graphics toolkit based on Java
3D, it allows programmers to

visualize, manipulate,
annotate, and edit complex 3D
scenes.
www.int.com.

LOOX Software Releases
LOOXGIS 1.3
(Paris, France / Burlingame, CA)
The new version of LOOX
Software’s high-performance Java
map-rendering component for
Java 2 developers offers new

levels of perform-
ance and accuracy for applica-
tions including management
of wireless networks, fleet
management, and intelligent
transportation systems.
www.loox.com.

Development Tool Extends
OLAP Capabilities to
Java Platform
(Sunnyvale, CA) – A Java 2
Enterprise Edition–compliant
application development tool

that enables the
rapid creation,
management, and
deployment of

Web-centric custom business
analysis applications is available
from Hyperion.

Hyperion Application Builder
allows companies to reduce
application development time
and the total cost of ownership
for building and deploying
custom analysis applications in
cross-platform environments.
www.hyperion.com

Infragistics Releases New
Products
(Cranbury, NJ) – Infragistics,
formed by the merger of

ProtoView
Development and

Sheridan Software, has released
JSuite 5.0 and JFCSuite 5.0. The
products allow Java developers to
add a feature-rich presentation
layer to their appli-
cations quickly, eas-
ily, and cost effec-
tively. Infragistics
has also released
PowerChart 2.0,
included with JSuite
and JFCSuite.

Each suite includes charting,
a grid, data input components,
an explorer, a tree, and
calendaring.
www.infragistics.com.

IPlanet Extends Portal Server
Offering
(Hannover, Germany) – iPlanet
E-Commerce Solutions, a
Sun–Netscape Alliance, has
extended its portal platform with
the addition of integrated
wireless capability via the iPlanet

Portal Server: Mobile
Access Pack. The

product lets service providers
offer a full spectrum of
portal services through any
Internet-based device and allows
enterprises to channel corporate
services and applications to
mobile employees to help
increase productivity and
promote rapid access to
business-critical information.

The product is fully integrated
with the iPlanet Messaging,
Calendar, and Directory Server
software products.
www.sun.com www.iplanet.com

Internetwork Introduces
Sm@rttest
(Worcester, MA) – Addressing
the need of large- to mid-range

networks to determine the
responsiveness of their load
capacity and efficiency,
interNetwork, Inc., has
introduced sm@rtTEST, a test
suite for mid- to large-scale
enterprises, inter-intranets, and
telecommunications networks.
The test engine creates the
behavior of an unlimited number
of real users through automated
scenarios stressing the network
and application services.
www.internetworks.com

(Toronto, ON) – Sitraka Software’s JClass Java
technology-based components are fully integrated
with Sun Microsystems’ Forte for Java. The
components are now available through
Flashline’s Components Marketplace
within the Forte for Java portal.

Through the Forte for Java Extension
Partners Program, Sitraka
Software (formerly KL Group)
will provide tight product
integration across all its prod-
uct lines,
beginning with its JClass fam-
ily of components, also
creating modules designed
specifically for use with the
Forte for Java product.
www.sun.com
www.sitraka.com

Sitraka Software Integrates
JClass with Forte for Java

Development Environment

Sun Releases JMF 2.1.1
(Los Angeles, CA) – Sun Microsystems has released
the Java Media Framework API software (JMF), a
“one-stop shop” for multimedia on the Java
platform. JMF 2.1.1, an optional API package

for J2SE, provides
a unified
architecture for the
capture, playback,
streaming, and transcoding of
media content across most
major operating systems. JMF
source code will be released
under Sun Community Source
Licensing (SCSL).
java.sun.com

Java COM

120 MAY 2001

Graphics and Virtual Studio
Solution
(New York, NY) – vi[z]rt Ltd.
has entered into a strategic
alliance to bring unique visual
presentation tools to the
corporate market under the
name vi[z] presenter.

As part of the turnkey corpo-
rate presentation solution, vi[z]rt
will feature three packages of its

vi[z] presenter
product line:
modeling for the

real-time creation of 2D or 3D
graphics; content management
for the coordination of graphics

through specifically
designed corporate and
financial templates;

and a virtual studio package that
allows for the integration of the
corporate presenter into a virtual
set using the Chromatte system.
This system reduces the need to
set up complex and controlled
lighting conditions, and enables
anyone to achieve high quality
chroma-keying.
www.vizrt.com
www.viewercom.com

Marketplace Manager Adds
Classifieds
(Salt Lake City, UT) – Infopia,
Inc., developers of Marketplace
Manager, have added the Excite

Classifieds
Network to

their list of online shopping
destinations where merchants
can list their products.
www.infopia.com.

Maxim I/T Integrates Autovue
for Java into Findview
(Lake Buena Vista, FL) – Maxim
I/T and Cimmetry Systems have

integrated
Cimmetry’s

Web-based
viewing

technology into FindView2.0.
Cimmetry’s technology will aid
users of Maxim I/T’s enterprise
search technology, FindView, to
view a broad range of formats.
www.maxim-IT.com
www.cimmetry.com

Motorola Reinvents Wireless
Phone as Digital Personal
Companion
(Schaumburg, IL) – Motorola has

a new genera-
tion of wireless

handsets that bring computing
power to the palm of your hand

and combine
many of the
capabilities of
a handheld

computer, two-way radio, inter-
active pager, and Internet-ready
mobile phone in a single device.

Two new handsets are the
first wireless phones in North
America to incorporate Java 2
Platform, Micro Edition, the
software environment from
Sun Microsystems. The offline
capabilities of J2ME technology
enable users to run applications
even when disconnected from
the network. For more informa-
tion or to obtain a free CD-ROM,
visit www.motorola.com/.

Compuware
Expands Testing
Solutions
(Farmington Hills, MI)
– Compuware

Corporation has

released
QAHiperstation 7.0,
providing support for
the IBM WebSphere
software platform for
e-business. The release
enables organizations
to leverage their S/390
investments for e-busi-
ness deployments.

QAHiperstation
provides a complete solution for
focused testing of S/390 business
logic. QAHiperstation 7.0 now
includes native support for S/390
applications accessed from a
Web browser. This new release
also reveals the TCP/IP and
APPC messages that drive the
S/390 business logic in
multitier applications.
www.software.ibm.com/websphere
www.compuware.com

WebGain Accelerates Java App
Development, Introduces
Quality Analyzer
(Santa Clara, CA) – WebGain,
Inc., has recently acquired
Metamata, Inc., a supplier of Java

development environment
and productivity software. The
addition of Metamata allows
WebGain to enhance its distrib-
uted debugging capabilities with
additional code analysis, metrics,
and coverage functionality.

WebGain also introduced
WebGain Quality Analyzer, a
Java-based product that enables
Java development teams to
improve the quality and
performance of enterprise-class
Java applications.

The product consists of three
main components: WebGain
Audit, WebGain Cover, and
WebGain Metrics. Each is
designed to assist managers and
developers at specific stages of
application development.
www.webgain.com

O’Reilly Offers New Edition of
Java Book
(Sebastopol, CA) – “Since I wrote
the first edition of this book,
servlets and the server-side Java
platform have grown in popular-
ity beyond everyone’s wildest
expectations,” writes Jason
Hunter, author of Java Servlet
Programming, Second Edition.
“The servlet world has changed
over the last two and a half years,

and [this
edition]

brings readers up-to-date.”
Like the bestselling first

edition, Java Servlet
Programming, Second Edition,
by Jason Hunter with William
Crawford, covers the servlet life
cycle; how to use servlets to
maintain state
information
effortlessly;
how to serve
dynamic Web content, including
both HTML pages and multime-
dia data; and advanced topics
like integrated session tracking,
efficient database connectivity
using JDBC, applet-servlet
communication, and
internationalization.

In addition, Hunter’s book
introduces JavaServer Pages
and explains how a servlet
programmer can (and should)
use them. It also provides
tutorials on several servlet-based
content creation frameworks
currently used in production
sites, including WebMacro/
Velocity, Tea, XMLC, and ECS.
www.oreilly.com

Rational Software and BEA
Announce Add-In

(Lexington, MA / San Jose, CA) – Rational Software and BEA
Systems, Inc., have announced a Rational Unified Process
Add-In for the BEA WebLogic Server 6.0.

The add-in offers comprehensive software
development guidelines, examples, and
templates for building high-volume,
mission-critical e-business applications on
the BEA WebLogic Server. A free
download is available at
www.rational.com and
developer.bea.com.

PointBase Releases 3.5

(Mountain View, CA) – PointBase 3.5, the
latest upgrade to Pointbase’s family of pure
Java, small-footprint database products,
has been released.

The new version includes JDBC 2.0 API
support for batch operations and
BLOB/CLOB, scrollable cursors, and SQL
caching. All are essential for decreasing
development time and providing more
efficient programmatic development.
www.pointbase.com

Java COM

122 MAY 2001

Java COM

L ast month in JDJ (Vol. 6, issue 4) I intro-
duced the topic of object/relational
mapping. Databases such as Oracle8i

or DB2 store data in tables and columns.
Thus, customer data is stored in a “customer”
table and information relevant to the cus-
tomer such as ID, name, and address are
stored as columns. All the data for a single
customer within the customer table is
equivalent to a “record.” From the EJB per-
spective customer data is represented by a
customer “class” and the data elements
are represented by “attributes.” Con-
ceptually, the mapping process is a simple
one. Each database table is an EJB class
(CMP or BMP), and each and every col-
umn in the table becomes an attribute.
Individual customer records are instanti-
ated as EJB objects as necessary.

This month I tested the latest release
of THOUGHT Inc.’s CocoBase Enterprise
O/R mapping tool on my Windows 2000
server. Java-centric software companies
such as THOUGHT Inc. take full advan-
tage of both Java and the Internet when
it comes to software development. They
continually enhance their products
with new features and bug fixes.

Last month I previewed “Service
Release 8,” and this month I was able to
upgrade to “Service Release 9” – which
included more than a dozen feature
enhancements. The installation of
CocoBase is packaged as a Java class file;
it’s a simple process to extract the instal-
lation files and install the software. The
Java installer isn’t fully Windows 2000
compatible yet, so CocoBase doesn’t cre-
ate desktop icons or menu items – all the
software must be accessed via a series of
command scripts. Nevertheless, it’s a
simple process to create your own desk-
top icons that point to the most common
functions. The starting point for working
with CocoBase is the Enterprise
Administration Interface. THOUGHT
Inc.’s choice of terminology here is a little
off the mark as the admin interface is
really the heart of CocoBase. All the major
functions of the software are accessible
from within this one interface –
which is itself a Swing-based GUI
program (see Figure 1).

CocoBase can connect to any of
your enterprise data through a pow-
erful JDBC interface. The software
also comes equipped with a built-in
SimpleText, Hypersonic SQL, In-
stantDB, database, and you can use
this data source to get accustomed to
the many tools within the CocoAdmin
interface. I elected to work with the
SimpleText database and to create a
new database map (as shown in the

upper window in Figure 1).
You’re free to map multiple

CocoBase objects to a single database

table, and I quickly created a variation on the
Employee Table that would list only those
employees that make over $20,000 annually. I
called this new object EmployeeGT20000 and
generated a new data map for this object from
within CocoBase within a few minutes. I chose to
build this object based on a CocoBase-supplied
“where clause” against the salary field using a
variable for the salary. Technically speaking, this
object could be used to represent any group of
employees by supplying different values for this
parameter. This new object extends the Object
class and either doesn’t implement any propri-
etary interfaces or implements a number of
interfaces including Cloneable, CBProp (a
CocoBase class), and java.io.Serializable.

Once I had defined the EmployeeGT20000
map, I used CocoAdmin to generate Java source
code into a package that I defined as “jmpkg”. I
could easily have added custom attributes and
derived fields as part of the generation process.
In either case, the resulting code is straightfor-
ward Java code as shown in the right-hand panel
in Figure 1. The generated code includes get/set
methods for all the attributes, a “where-clause”
facility, and a facility for managing query infor-
mation. Feel free to extend and modify this
code. CocoBase can be used to manage data
using both the BMP and CMP entity bean types.
THOUGHT Inc. provides interface code for a
wealth of third-party application servers includ-
ing Allaire, Borland, IBM WebSphere,
HP/Bluestone Sapphire, iPlanet, BEA WebLogic,
and Sybase. (The development environment
integrates with a number of popular Java IDEs
such as VisualAge for Java, Borland’s JBuilder 4,
and iPlanet’s Forte for Java.) This review covers
only a fraction of CocoBase’s capabilities and I’d
encourage you to review the PDF documenta-
tion for additional details.

Summary
CocoBase’s O/R tool can greatly simplify the

task of interfacing Java code with relational data.
In contrast with complete “frameworks,”
CocoBase improves productivity without sacrific-
ing low-level control. You’re free to modify the Java
source as necessary to address your specific appli-
cation needs. I’d encourage you to put CocoBase
on your short list of products to consider when
building a data-centric J2EE application..

P
R

O
D

U
C

T
R

E
V

I
E

W

AUTHOR BIO
Jim Milbery is a software consultant with Kuromaku Partners

LLC (www.kuromaku.com), and is based in Easton, Pennsylvania.
He has over 17 years of experience in application development

and relational databases. Jim is the applications editor for
Wireless Business & Technology, the product reviews editor
for Java Developer’s Journal, and a coauthor of Making the

Technical Sale (Muska & Lipman).

CocoBase
Enterprise
O/R V3.1 Service Release 9.0

by THOUGHT Inc.

REVIEWED BY JIM MILBERY

jmilbery@kuromaku.com

THOUGHT Inc.
657 Mission Street
San Francisco, CA 94105
Web: www.thoughtinc.com
E-mail: info thoughtinc.com
Phone: 415 836-9199

Test Environment: Sony Vaio Pentium II
366MHz 256MB RAM

FIGURE 1 CocoAdmin with its many functions on display

Objective
There are pros and cons to including

an objective. If you’re applying for a full-
time job and have specific goals that this
position will help you achieve, an objec-
tive could be helpful. However, most
objective statements are too generic and
therefore meaningless.

Omit the objective statement and let
your skills and experience speak for
themselves.

Skills
In a technical résumé the specific

skills and proficiencies are key. Put the
skills section right up front. And, please,
organize it!

Group skills in order of most recent
use and according to specific categories.
An organized list indicates that you
know which tools are related to each
other. It can also suggest how you’ve
used the skills and for what purpose.
And break out the skills into categories,
such as Platforms, Languages, and
Operating Systems.

Skills are keywords in more ways
than one. Once you’ve listed your skills,
continue to list them throughout the
experience section. It’s always helpful to
know what tools you’ve used most
recently, most often, and when and
where. Most online recruiting is based
on keyword searches that produce
results based on the number of times
those keywords appear in the résumé.

If you have a lot of antiquated tools
and technologies on your résumé, think
twice about including them. Focus your
skills and experience around what
you’re doing now and what you want to
do next. The résumé doesn’t need to be
your whole life story. Pick and choose
what you want to include to get the job.

Functional Résumés
Some people recommend a résumé

that begins with detailed descriptions of
the functions you’ve performed, followed

by a minimal list of employment dates
and experience. From our perspective,
three words come to mind: Don’t Do It.

Many staffing and hiring profession-
als scan résumés to zero in on the most
important information: the experience
section. They need to know what you’ve
done and when and where you’ve done it.

Experience
The experience section is the

résumé’s meat and bones. Each of your
positions should be listed with your title,
what you did, what tools you used to do
it, and how long you did it.

If you oversell yourself, the worst
thing that can happen is that you’ll get
the job. Time and time again, junior to
mid-level developers get jobs they’re not
qualified for based on misleading
résumés. This person is quickly over-
whelmed, can’t perform the job he or
she was hired to do, and is soon revealed
to be incompetent.

A detailed paragraph of what the
company did is not meaningful infor-
mation. A detailed paragraph about
what your specific role was at that com-
pany is both pertinent and meaningful.

Dates of hire should include both
month and year. Employers are wary of
many short-term positions, so if you’ve
had a series of contracts, list them as such.

It’s always better to be honest about
your career history than to appear to be
hiding something.

Don’t list every job you’ve ever had.
The résumé should represent who you
are and what you do now.

Entrepreneurial ventures can be an
asset if presented in light of the job
you’re applying for. But they can also be
a liability. You may have been CEO of
your own venture, but the title won’t
help you get an engineering job – and it
may hurt you.

If you’ve done a lot of management,
emphasize it only if you’re applying for a
management role. Management skills

listed on a developer’s résumé might
cause the hiring manager to think: “This
person’s going to want to manage every-
thing – and will probably want my job.”

Remember, whatever you list in the
skills section must be listed in the expe-
rience section to give it validity.

Education
Include degrees earned, and the names

and locations of all educational institu-
tions, but leave dates off. The law forbids
employers from considering candidates
based on age. Dates of graduation provide
information that by law they must ignore.

Bachelor’s and master’s degrees in
computer science and related fields are
always a plus. But MBAs can send up a
red flag to employers who are just look-
ing to hire a hands-on developer.

A PhD on a résumé can also be tricky
if you’re looking for a straight developer
job. Some managers think of PhDs as
being more interested in exploring com-
plex theories than in creating practical
real-world solutions.

Military
This experience usually suggests a

well-disciplined candidate with a good
work ethic. But describe your military
experience only as it relates to the job
you’re applying for.

Hobbies and Personal Information
Although hobbies and sports can be

good conversation starters in inter-
views, they can also backfire. And leave
off all references to age, marital status,
family, and health as employers are for-
bidden by law to consider any personal
information in their hiring decisions.
For the same reason, leave off that little
photo of yourself and let your work
experience show your stability.

The Paper Chase

WRITTEN BY
BILL BALOGLU &
BILLY PALMIERI

As staffing professionals we read a lot of résumés.The most common problem is that
they misrepresent candidates as being more skilled and experienced than they really
are…or, worse, they misrepresent seasoned candidates as less experienced than they
are. A good résumé is a clear,detailed visual representation of who you are,what you’ve
done, and what you want to do.The key to writing a good one lies not in the beauty of
your creative writing, but in highlighting how your skills and experience are relevant to
the position you’re applying for.

Advisor Recruitment Advertising – 800-582-3089

Career Opportunities

Advisor Recruitment Advertising – 800-582-3089Recruitment Advertising Information: 800-582-3089

Résumés: Greatest ally…or worst enemy?

AUTHOR BIOS
Bill Baloglu is a principal

at Object Focus
(www.ObjectFocus.com), a
Java staffing firm in Silicon

Valley. Prior to that he
was a software engineer

for 16 years. Bill has
extensive OO experience

,and has held software
development and senior
technical management

positions at several
Silicon Valley firms.

Billy Palmieri is a
seasoned staffing industry
executive and a principal

of ObjectFocus. Before
that he was at

Renaissance Worldwide, a
multimillion-dollar global
IT consulting firm where

he held several senior
management positions in

the firm’s Silicon
Valley operations.

billb@objectfocus.com

billp@objectfocus.com

Java COM

132 MAY 2001

In this new era of rapid application develop-
ment (RAD), there’s an ever-increasing push
to get applications into production without

adequate testing. This methodology does meet
deadlines, but it can also lead to serious impli-
cations for your business’s future. For exam-
ple, many Internet companies deploy appli-
cations that lack the ability to handle high
loads, or their applications aren’t scalable
enough to grow with the increasing
demands of the business. With a little test-
ing these simple mistakes can be caught
before an application goes into production.

I’ve been developing applications
since 1996 and have seen an increasing
trend within many development teams to
rush a product out the door without ade-
quate testing. Recently I reviewed a new
version of a testing tool named Bean-test
from Empirix, Inc. Bean-test is an appli-
cation tool built from the ground up to
test your EJBs on BEA WebLogic, IBM
WebSphere, Bluestone’s Total-e-Server
application servers, or any other EJB 1.1
application server.

Installation of Bean-test is straight-
forward. Since it’s built using 100% Java,
installation of the server and associated
client agents are relatively simple on
many platforms. Once the installation
is complete, starting Bean-test on
Windows is a breeze. Within a matter of
seconds the Bean-test user interface
pops up in your default Web browser,
and you’re ready to begin testing EJBs.

Getting Started with Bean-test: Sample EJBs
Empirix provides an excellent tutorial

session on using the demo beans.
During your evaluation period you have
the option of spending one hour with an
Empirix representative who will show
you the entire program and how to gen-
erate a test case. To use the demo beans
you need to deploy them to your appli-
cation server; in my case, I deployed
them to a WebLogic 5.1.0 SP8 server run-
ning on the same machine. To deploy the
sample beans to the application server,
click on a file located in the Bean-test
installation directory and add a cou-
ple of WebLogic JAR files to the
Bean-test classpath configuration
page. Now you’re ready to begin gen-
erating test cases (see Figure 1).

Once the Bean-test user interface
is loaded, you should first set up your
servers. A neat feature within the
Bean-test product is that you can
install Bean-test clients (agents) on
remote machines. In the setup tab you
can add or configure the machines that
will participate in the test process. With
the agents you can specify the number

of Java Virtual Machines (JVMs) that will
be spawned on those machines as well as

the weight of that system. This comes in

handy if you have several machines with differ-
ent amounts of memory or processing power,
as it provides an accurate test of your EJB. Also,
under the setup tab you can edit the applica-
tion server properties. This enables you to add,
delete, or modify application servers, classpath
variables, and other information.

With Bean-test, project creation is easy and
quick. You need to indicate the project name,
select the type and version of application serv-
er you wish to use, and specify the classpath to
the EJB JAR files that are installed on the appli-
cation server. Once this is completed, Bean-
test will automatically find and display the EJBs
it found within your JAR files. You can even tell
Bean-test to automatically create test cases for
all the beans it finds. This is especially handy if
you have 50 beans and wish to test them all.

Now that a test case has been generated, you
can view the generated client code. A feature of
Bean-test is that all code is generated in a stan-
dard open fashion, enabling you to either edit
the client code using the built-in editor within
the Bean-test UI, or load the file into your
favorite development tool for further editing.

Bean-test is very flexible with regard to actual
test data. For supplying test data you can choose
between randomly generated data and data from
a data table, or enter the data directly on the
screen. Data tables are typically comma-delimit-
ed files and can be edited with any type of editor.
This allows for greater control over the applica-
tion data that will be supplied to your EJB.

Running the Test Case
If you have distributed clients set up, you

can request the server to pack up the appropri-
ate client files and ship them out to each
remote client. When your tests are done, Bean-
test’s extensive reporting system allows you to
see where problems can develop within your
application. It enables you to also designate a
test result as a baseline so you can compare dif-
ferent test results to gain insight as to how your
EJBs perform under varying situations.

Bean-test by Empirix is a robust testing tool
that’s flexible enough to meet the testing needs
of today’s rapid development market. You can
download an evaluation copy of Empirix’s
Bean-test product at www.empirix.com.

P
R

O
D

U
C

T
R

E
V

I
E

W

AUTHOR BIO
Cedrick W. Johnson works with object-oriented programming
projects at Acxiom Corporation in Downers Grove, Illinois.

Johnson is also studying computer science at
Northern Illinois University.

Empirix, Inc.
1430 Main Street
Waltham, MA 02451
Phone: 781 993-8500
Web: www.empirix.com
E-mail: info@empirix.com

System Requirements:
Memory: 128MB recommended minimum
Hard Disk Space: 50MB recommended minimum

Test Environment:
BEA WebLogic 5.1.0 Service Pack 8,AMD K6-2 500 MHz,
Windows 2000, 190MB RAM.
For extra Bean-test remote “agent”:
Pentium 120, JDK 1.3, RedHat Linux 7 with 48MB RAM.

Bean-test
3.1

by Empirix, Inc.
(Formerly RSW Software)

REVIEWED BY CEDRICK W. JOHNSON

cedrick@cedrick-johnson.com

FIGURE 1 Bean-test Test Case Screen

